ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Credit analysis with a clustering RAM-based
neural classifier

Douglas O. Cardoso!, Danilo S. Carvalho!, Daniel S. F. Alves',
Diego F. P. Souza', Hugo C. C. Carneiro’,
Carlos E. Pedreira', Priscila M. V. Lima? and Felipe M. G. Franca' *

1 - COPPE, 2 - iNCE, Universidade Federal do Rio de Janeiro, BRAZIL

Abstract. Datasets with a large amount of noisy data are quite com-
mon in real-world classification problems. Robustness is an important
characteristic of state-of-the-art classifiers that use error minimization
techniques, thus requiring a long time to converge. This paper presents
ClusWiSARD, a clustering customization of the WiSARD weightless neu-
ral network model, applied to credit analysis, a non-trivial real-world prob-
lem. Experimental evidence show that ClusWiSARD is very competitive
with Support Vector Machine (SVM) w.r.t. accuracy, with the difference
of being capable of online learning. Nonetheless, it outperforms SVM in
both training time, being two orders of magnitude faster, and test time,
being slightly faster.

1 Introduction

Data with concept drift increases the complexity of classifiers, since information
learnt is likely to degrade classification performance over time, as both feature
patterns and target functions can change. This is the case of credit analysis, a
recurring problem in the banking business which can be summarized as deciding
which requests for credit should be granted. The usual process involves the
collection of data, which is used to determine the “quality” of the request, in
other words, the risk of a borrower failing to pay his or her debts. The analysis
of these data, however, is a complex problem.

One of the aspects which makes this problem considerably harder is the
change of patterns over time. The movement of populations, changes in econ-
omy, natural catastrophes [1], general news [2], among other factors which may
directly affect the relations pertinent to credit. Another aspect to be considered
is the bias of the available data: only data about granted requests are usually
stored. This means there is not enough information about the bad payers.

An automated learning and classification mechanism could offer a more pre-
cise solution, being able to analyse vast amounts of data on credit applications
and consider subtle relations between the actual financial data and the borrower
profile. Those methods would need to be efficient and robust in order to account
for changes in the circumstances and sample biasing. Two classifying mecha-
nisms which exhibit these characteristics are the WiSARD [3] artificial neural
network model and the Support Vector Machine (SVM) [4], which we introduce
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in, respectively, sections 2 and 3. This work proposes a new implementation
of the WiSARD weightless neural network, as well the necessary preprocessing
for the analysed data. For comparison purposes the same data is classified by a
Support Vector Machine.

2 Adopted Weightless Model

A Weightless Artificial Neural Network (WANN) is a pattern recognition sys-
tem whose main difference from other learning methodologies lies on the direct
use of information storage instead of error minimization, with Random Access
Memories (RAMs) as storage mechanism [3]. The usual operation of a WANN
uses the input to build a set of addresses which are used to access RAM nodes
contents.

This work adopts WiSARD (Wilkie Stonham and Aleksander Recognition
Device) [3], a pioneering WANN architecture that is composed by distinct sets
of RAM nodes called discriminators. Each discriminator is assigned to one of
the classes of patterns to be recognized, i.e., the number of discriminators in the
WiSARD network is the same as the number of classes. A discriminator consists
of a single layer of RAM nodes, which are all started with the default value zero
(0) in every addressable position. The network has also been extended with a
tie breaking capability, called bleaching [5], to deal with inconclusive pattern
classifications.

WiSARD is, originally, a Boolean neural network and thus any input given
to the architecture must be converted into a binary string. The preferred binary
encodings for numeric features are the ones with a Hamming distance related to
the numeric distance, so that the input can be compared for similarity. Encod-
ings which do not have this characteristic, e.g. IEEE 754, should be avoided.
After the conversion is made, the input is shuffled according to a fixed pseu-
dorandom mask (defined at the creation of the network) and split to generate
input addresses of all RAM nodes. During the training phase, some memory
locations at the RAM nodes in the discriminator corresponding to the trained
class are accessed according to each input pattern. Each access increments by
one the value stored in the addressed content. During the classification phase
every discriminator retrieves the information addressed by the input pattern.
Each RAM node accessed this way outputs one (1) if its addressed memory po-
sition holds a value higher than the bleaching threshold, and zero (0) otherwise.
A discriminator response is the sum of the outputs of each of its RAM nodes, as
seen in Figure 1. The discriminator with the highest response is chosen for the
classification. If two or more discriminators share the highest response then the
bleaching threshold must be incremented by one and a new classification itera-
tion is performed. Training and classification can be interleaved during runtime.
By doing so, WiSARD can be employed in continuous (online) learning tasks.
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Fig. 1: Example of access in a discriminator.

2.1 ClusWiSARD

The combination of very different input patterns of the same category in a
WiSARD discriminator can enable the recognition of test patterns very dissimilar
from those learned previously by this unit. ClusWiSARD avoids this by creating
input pattern clusters, according to the acceptance threshold of each of them.
This resembles ART [6], but the use of discriminators as clusters representatives
is the main difference from it.

Therefore, the main novelty of ClusWiSARD lies in its knowledge storage,
which uses a group of discriminators per class. This allows for the distribution of
training data into discriminators that better represent natural clusters, i.e., by
capturing subpatterns as “subclasses”. For each training input pattern, if any of
the discriminators of this pattern class gives a recognition response higher than
its acceptance threshold, the pattern is learned. If no discriminator accepts the
input, a new discriminator is created to learn it. The acceptance threshold is
proportional to the number of elements in the cluster.

Classification with ClusWiSARD is similar to the original WiSARD: the
input is tested with all discriminators; if there is a tie a bleaching process occurs.
The class of the discriminator with the highest response is chosen for the input.

3 SVM

Support Vector Machines (SVM) [4] is a widely used machine learning technique
that allows for the determination of a maximum-margin hyperplane that sep-
arates data of two distinct classes. In this paper two classes are considered:
paid-back and non paid-back loans. Furthermore, by projecting data in a higher
dimensional space, one eventually reaches linear separability. This is done by
using kernel functions, e.g., polynomial, radial basis function or sigmoidal. A
linear kernel function would restrict the procedure to the margin maximization
step, without projecting data into a larger dimensional space. Besides kernel se-
lection, it is also possible to use a light version of the SVM mechanism. This light
version does not take into account all data points to determine the separation
margin, and usually achieves a better generalization.
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4 Data-Preprocessing

As in many applications, data preprocessing may improve the classifier perfor-
mance. In this paper, three aspects of data analysis concerning preprocessing
are covered: noisy data correction, attribute influence evaluation and optimal
encoding. Next, a description of the data and the treatment proposed for each
preprocessing aspect under consideration are presented.

The dataset used in this work comes from the BRICS-CCI & CBIC Com-
puter Intelligence Algorithm Competition [7]. It contains the data of credit
applications, labelled with the status of the approval. Each entry corresponds
to a credit request from a client of a private credit card retail chain, labeled as
“good” or “bad” depending on the payment behavior. A client is considered
“bad” if he or she defaults the debt for more than two consecutive months, and
considered “good” otherwise. The attributes for each entry include age, gender,
net income, among others. There are 40 attributes in total, which were grouped
in four categories: numeric range, numeric cyclic, categorical and Boolean.

The binary enconding used depended on the attribute type in order to be
compatible with Hamming distances. The used encoding methods follow:

e Boolean encoding: Maps true values to “1” and false values to “0”; Used on
boolean attributes, e.g., registered_id;

e Categorical encoding: Each value is mapped in a way that its Hamming distance
is equal to all other values of the attribute; Used on categoric attributes, e.g.,
city;

e Range encoding: Maps the values while keeping the ordering of the original
distance function; Used on numerical attributes, e.g., age;

e Cyclic encoding: The minimum and maximum values have the minimum Ham-

ming distance between them; The maximum distance occurs on opposite sides
of the cycle; Used on numeric cyclic attributes, e.g., payment_day;

It is also reasonable to expect that the attributes contribute differently to the
classification task and that the dataset contains a large number of attributes with
small or no contribution. To address this and reduce the number of attributes,
a study was conducted on the degree of influence each attribute has over the
payment behavior. The information value [8] was calculated for each of the 463
attributes derived from the preprocessing of the original 40, which were sorted.
The hundred attributes with the highest information values were then chosen to
be used with the SVM, the ClusWiSARD used the complete dataset. Figure 2
shows the information value of the attributes in logarithmic scale.

5 Classifiers Evaluation

The classifiers were compared through a binary classification task of credit re-
quests. This kind of data is influenced by macroeconomical factors and events,
which could be seasonal or not. This leads to concept drift: what characterizes
a credit request as good or bad is related to when it was subjected. Taking this
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Fig. 2: Information value of the attributes.

into account, the classifiers’ performance was evaluated on the observations of
each month over a two-year span, after training using data of the three months
before it. Therefore, the first three months of 2009 were not used as test targets.

The method used to train the SVM network works as follows. In order to
determine the best parameters for this specific problem, a second dataset com-
posed of 12000 observations was created. This dataset was randomly generated
from the original one with five hundred observations for each month. Once this
dataset was ready, multiple instances of SVM networks were trained varying its
parameters. These consisted of the kernel function used (Polynomial, RBF and
Sigmoid) along with their configuration parameters: v, coef0 and degree for
Polynomial; v for RBF; and v and coe fO for the Sigmoid kernel. In the end, the
polynomial kernel function obtained the best results. The configuration had a
degree of 3, coef0 equal to zero and the value for v was approximately 0.01509,
according to the equation:

k’(u,v) = (’y sul %o + coefo)degree (1)

The parameters v and v from the kernel function are two samples from the
training set passed to the kernel. An extended description about the meaning
of the kernel function and how they are used can be found in [4]. The classifiers
were optimized according to the average per-class accuracy. This was preferred
over the general accuracy because of the great difference in the dataset share
between the classes, which, however, does not represent a greater significance of
one class compared to the other. Predicting all observations as being of the more
popular class could result in a good general accuracy although no discretization
of the classes were being made. On the other hand, a too high average per-class
accuracy could also be a sign of over-fitting. SVM performs around 10% better
than ClusWiSARD at this measure despite losing in general accuracy, showing
a bit more discretization power, at expense of time.

Figure 3a shows the general accuracy results of the tested options. Figure 3b
logarithmically compares the time spent by both models to train with the data
from the three previous months.
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6 Conclusion

The problem of classification applied to credit analysis is an interesting appli-
cation for machine learning. In the case of this work, the data preprocessing
was an important step in the classification of the presented data, resulting in
improvement for both mechanisms, though there was an added binarization step
for ClusWiSARD.

Both ClusWiSARD and SVM presented close and accurate results in this
batch learning setting but ClusWiSARD also demonstrated great advantage in
training time. Moreover, ClusWiSARD operates in the same way for an online
learning setting, therefore being more flexible. Further work should develop a
proper benchmark for comparison.

In conclusion, ClusWiSARD appears to be a promising model for large and
complex amounts of data with efficient training and classification time.

References

[1] Tarja Joro and Paul Na. Derivatives and credit risk: Credit risk modeling for catastrophic
events. WSC ’02. Winter Simulation Conference, 2002.

[2] Hsin-Min Lu, Feng-Tse Tsai, Hsinchun Chen, Mao-Wei Hung, and Shu-Hsing Li. Credit
rating change modeling using news and financial ratios. ACM Trans. Manage. Inf. Syst.,
3(3):14:1-14:30, October 2012.

[3] Igor Aleksander, W. V. Thomas, and P. A. Bowden. WISARD: A radical step foward in
image recognition. Sensor Review, 4:120-124, July 1984.

[4] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, 1995.

[5] Bruno P. A. Grieco, Priscila M. V. Lima, Massimo De Gregorio, and Felipe M. G. Franca.
Producing pattern examples from “mental” images. Neurocomputing, March 2010.

[6] Gail Carpenter and Stephen Grossberg. A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics, and Image
Processing, pages 54-115, 1987.

[7] NeuroTech S.A. (Brazil). CI algorithms competition dataset, 2013. http://brics-cci.org/ci-
algorithms-competition-ciac/.

[8] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. J.
Mach. Learn. Res., 3:1157-1182, March 2003.

522





