
LangVAE and LangSpace:
Building and Probing for Language Model VAEs

Danilo S. Carvalho1, Yingji Zhang2, Harriet Unsworth1, André Freitas1,2,3
National Biomarker Centre, CRUK-MI, University of Manchester, United Kingdom1

Department of Computer Science, University of Manchester, United Kingdom2

Idiap Research Institute, Switzerland3

§ https://github.com/neuro-symbolic-ai/{LangVAE, LangSpace} | Å Short Video

Abstract

We present LangVAE, a novel framework for
modular construction of variational autoen-
coders (VAEs) on top of pre-trained large lan-
guage models (LLMs). Such language model
VAEs can encode the knowledge of their pre-
trained components into more compact and se-
mantically disentangled representations. The
representations obtained in this way can be
analysed with the LangVAE companion frame-
work: LangSpace, which implements a collec-
tion of probing methods, such as vector traver-
sal and interpolation, disentanglement mea-
sures, and cluster visualisations. LangVAE and
LangSpace offer a flexible, efficient and scal-
able way of building and analysing textual rep-
resentations, with simple integration for models
available on the HuggingFace Hub. Addition-
ally, we conducted a set of experiments with
different encoder and decoder combinations, as
well as annotated inputs, revealing a wide range
of interactions across architectural families and
sizes w.r.t. generalisation and disentanglement.
Our findings demonstrate a promising frame-
work for systematising the experimentation and
understanding of textual representations.

1 Motivation and Purpose

Variational Autoencoders (VAEs) (Kingma et al.,
2013) are of considerable importance in machine
learning due to their capacity to integrate prior
knowledge, quantify uncertainty, enhance gener-
alisation, and deliver interpretability. First, the
integration of prior distribution serves as an induc-
tive bias, enabling the model to leverage existing
knowledge and providing a principled way to in-
corporate domain expertise. In the computational
linguistics domain, for example, the hierarchical
syntax information can be well encoded via hyper-
bolic prior (Davidson et al., 2018; Cho et al., 2023).
Second, their probabilistic formulation allows for
explicit uncertainty quantification, providing not
only point estimates but also confidence intervals

over latent variables and reconstructions, which is
significant in the Safety and Trustworthy AI do-
main, such as hallucinations of LLMs (Ji et al.,
2023). Third, by enforcing a smooth and contin-
uous latent space, VAEs promote better composi-
tion and generalisation, as they capture the under-
lying generative factors of the input distribution
(Bonnet and Macfarlane, 2024). Fourth, the latent
space can compress the knowledge into abstract-
level concepts, which is similar to how humans
understand the world (Barrault et al., 2024). Con-
currently, the rapid pace of development of LLMs
has led to substantial gains in a wide variety of
NLP tasks, demonstrating remarkable knowledge
representation capabilities (Kauf et al., 2023; Selby
et al., 2025), but present critical challenges in in-
terpretability and fine-grained control (Kunz and
Kuhlmann, 2022; Friedman et al., 2024).

To leverage the strengths of both LMs and VAEs,
Language model-based VAEs (LM-VAEs) (Bow-
man et al., 2015) have been proposed and widely
deployed in the controlled text generation domain,
such as style transfer tasks: modifying sentences
with regard to markers of sentiment, formality, affir-
mation/negation (Bao et al., 2019; Vasilakes et al.,
2022; Gu et al., 2022; Liu et al., 2023; Gu et al.,
2023; Liu et al., 2024) and textual, syntactic, se-
mantic representation learning domain (Mercatali
and Freitas, 2021; Carvalho et al., 2023; Zhang
et al., 2024b,c). However, despite their strategic
positioning in delivering more controlled latent rep-
resentations, there has been limited software infras-
tructure support to facilitate experimentation with
LM-VAEs and in particular, scaling-up to Large
Language Model configurations (LLM-VAEs).

In this work we address these issues by present-
ing a novel framework for modular construction of
LM-VAEs on top of pre-trained LMs of different
scales, called LangVAE, and its companion frame-
work LangSpace, dedicated to latent space probing
and evaluation. LangVAE introduces a novel ap-

1

https://github.com/neuro-symbolic-ai/LangVAE
https://github.com/neuro-symbolic-ai/LangSpace
https://youtu.be/DVcrdIX9CfI

Latent Interpolation:
source: humans require freshwater for survival

1. humans require water for survival
2. nonhumans require water for survival
3. animals require water and food
4. animals require water to survive
5. animals require water to live
6. animals require food for survival
7. animals require food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food to survive

Target: animals require food to survive

Latent Traversal:
an animal requires energy to move
an animal requires shelter

humans usually use gasoline
humans use coal to make food
humans depend on pollinators for survival

wheels are a part of a car
lenses are a part of eyeglasses
copper and zinc are two metals

summit mean the top of the mountain
colder mean a decrease in heat energy
friction mean the product of a physical change

Latent Arithmetic(top: +, bottom: -):
s1: animals require food for survival
s2: animals require warmth for survival

animals produce milk
animals usually eat plants
animals eat berries ; plants

s1: water vapor is invisible
s2: the water is warm

quartz is usually very small in size
quartz is formed by magma cooling
quartz is made of iron and zinc
silica is made of argon and argon

Figure 1: LangVAE is a flexible framework designed to support arbitrary combinations of pretrained encoders and
decoders for learning latent representations under either a categorical semantic prior or a Gaussian prior. LangSpace
facilitates comprehensive analysis of the learned latent space through automated evaluation of key properties such
as disentanglement and visualization (top) and enables controlled generation by leveraging these latent properties,
such as latent traversal, interpolation, and arithmetic operations (bottom).

proach for latent vector unpooling to autoregressive
LMs that sharply reduces the computational and
memory requirements, while incorporating com-
patibility to contemporary LLMs and hardware op-
timisations.

Finally, we conducted a set of experiments as a
case study to demonstrate the frameworks’ capabil-
ities and highlight the effects of different combina-
tions of encoder and decoder models, in terms of
generalisation and latent space disentanglement, ev-
idencing the impact of facilitating a systematic anal-
ysis across different encoder-bottleneck-decoder
combinations and parametrisations.

Both frameworks are available as python li-
braries in the PyPI package repository and on pub-
lic source code repositories1 2. A demonstration
video is available at: youtu.be/DVcrdIX9CfI.

2 Language Model VAEs

A language model VAE (LM-VAE) is a variational
autoencoder where both the encoder and decoder
components are LMs (Bowman et al., 2015; Li
et al., 2020; Tu et al., 2022; Zhang et al., 2023).
It can encode the knowledge of their pre-trained

1https://github.com/neuro-symbolic-ai/LangVAE/
2https://github.com/neuro-symbolic-ai/LangSpace

components into compact latent vectors and en-
ables guided language generation from an abstract
level using said vectors. The benefits of such mod-
els also extend to interpretability (due to their bet-
ter disentanglement properties), as the VAE archi-
tectural bottleneck provides a singular point for
probing a model’s latent space structure and its
syntactic/semantic representation (Li et al., 2020;
Mercatali and Freitas, 2021; Carvalho et al., 2023;
Zhang et al., 2024b,c) and inferential properties
(Bonnet and Macfarlane, 2024). The creation
of continuous latent representation spaces, with
better disentanglement and separability of syntac-
tic/semantic properties offers a key mechanism
for supporting generative control both at the level
of sentences (Bao et al., 2019; Felhi et al., 2022;
Zhang et al., 2024c) and natural language infer-
ences (Yu et al., 2022).

In its most basic conceptualisation, an LM-VAE
consists of: (a) an encoder type LLM (e.g., BERT,
T5), to provide base representations for each token
of the input text; (b) a pooling process to accumu-
late the input token representations; (c) a projection
layer, to convert the base encoding to the regu-
larised VAE latent space; (d) an unpooling process,
to derive token representations from a latent vector

2

https://youtu.be/DVcrdIX9CfI
https://github.com/neuro-symbolic-ai/LangVAE/
https://github.com/neuro-symbolic-ai/LangSpace

pre-
trained
encoder
LLM

pooling latent
proj.

pre-
trained
decoder
LLM

unpoolingZ

x0
x1

xt-1
xt

x’0
x’1

x’t-1
x’t

.

.

.

.

.

.

Encoder Decoder

Figure 2: Diagram of fundamental LLVAE architecture.

and feed them to the decoder; and (e) a decoder
type LLM (e.g., GPT, Llama) capable of generat-
ing tokens from a sequence of input representations.
This structure is illustrated in Figure 2. On the top
of this base configuration, syntactic and semantic
features can be injected into the latent space, aim-
ing to improve the localisation and control of such
features via conditionalisation mechanisms, such
as CVAE or clustering losses. Moreover, further
architectural interventions can be integrated aiming
for additional control, such as the addition of INN
layers (Zhang et al., 2024a), aiming for improving
the separability of semantic features.

2.1 Optimus

The pioneer LLVAE is Optimus (Li et al., 2020),
which combines a BERT encoder and a GPT-2 de-
coder to perform sentence encoding, using a mean
pooling process, a linear projection layer (MLP),
and a unpooling process consisting of two concur-
rent schemes for latent memory injection to the
decoder:
Memory: appends a projection of the latent vector
directly to each hidden layer of the decoder as a
hidden memory vector for the decoder to attend.
Embedding: adds a projection of the latent vector
to the decoder embedding layer at each decoding
step.

Optimus is trained end-to-end, meaning that the
encoder projection layer and the memory and em-
bedding injection layers are jointly trained with the
base encoder and decoder models. In this way, the
pre-trained models are fine-tuned to "weld" with
the projection and injection layers, facilitating con-
vergence.

Despite its demonstrated capabilities and poten-
tial, Optimus has some limitations, in particular
regarding model coupling and scalability. We next
discuss our proposed approach for building LM-
VAEs and its improvements over the SOTA.

LangVAE

Sentence
Encoder

Sentence
Decoder

Tokenized
DataSet

Sentence
DataSet

Pooling

Token translation

Encoder caching

Cond. decoding

KV cache injection

Hardware optim.

Configuration

Loss functions

Persistence

Language
Training
Pipeline

CyclicalSchedule
KLThreshold

Trainer

TensorBoard
Callback

Logging

Format optim.

Caching

Collation

SAFSAF

SAFSAF SAF integration

 Responsibility

HF integration

SAFSAF

Figure 3: Overview of the LangVAE framework.

3 LangVAE: Building modular LM-VAEs

Aiming to address current LM-VAE limitations
and facilitate the development of specialised mod-
els and experimentation over next-gen LLMs, we
developed LangVAE. This is a novel framework
specifically targeted at LM-VAE research, focused
on the modular development of the architectural
components discussed in the previous section (es-
pecially projections and unpooling processes), and
having a strong integration with the python trans-
formers library3. LangVAE is developed and dis-
tributed as a python library1 under the GPLv3 Li-
cense. It is built on top of the pythae library for
autoencoders (Chadebec et al., 2022). Figure 3
provides an overview of LangVAE’s modules and
responsibilities.

3.1 Architecture
LangVAE implements the fundamental LM-VAE
architecture (Figure 2) in the following ways:

Pre-trained LLM encoder: as a loader for an
encoder type LLM compatible with the transform-
ers library, via the automodel classes (AutoModel,
AutoModelForTextEncoding).

Pooling process: mean pooling, last hidden state
of the base encoder, or the CLS token hidden state,
which is automatically selected depending on the
pre-trained encoder model configuration.

Latent projection layer: a linear MLP that ad-
justs the input encoding size on training time.
3https://github.com/huggingface/transformers

3

https://github.com/huggingface/transformers

Unpooling process: a variation of the memory
injection scheme from Optimus, called KV cache
injection, which does not require customisation of
the pre-trained decoder code. Instead, it uses the
transformers library KV caching mechanism for
guiding the decoder (detailed in the next section).

Pre-trained LLM decoder: same as the
encoder, but relying on the transformers AutoMod-
elForCausalLM class for model parametrisation
regarding tokenizer configuration and hardware
optimisations (e.g., flash attention and multi-GPU
distribution).

In addition, LangVAE provides the following
functionalities:

Data conversion: TokenizedDataSet classes for
convenient and efficient tokenisation of text
datasets, including the handling of annotations.

Training pipeline: supporting cyclical schedule
KL annealing to avoid the KL vanishing problem,
with beta and KL thresholds.

Training monitoring: with tensorboard logging.

3.2 KV cache injection
One of the central contributions behind LangVAE
is the key-value (KV) cache injection scheme, as
an alternative to Optimus’ memory injection. This
new scheme uses the KV caching mechanism of the
Causal LM model classes within the transformers
library to inject a positional projection of the la-
tent vector. A linear projection of the latent vector
hcache = Wmz plays the role of an additional con-
text to guide generation, in the form of hidden KV
cache entries Xh

t interleaved with those produced
by the decoder, where Wm ∈ RLH×S is separated
into S × L (sequence length * # layers) vectors of
hidden size H = K × V . Figure 4 illustrates this
scheme.

There are two main advantages to this approach.
Firstly, it eliminates the need to change the layout
of the hidden layers to accommodate the injected
memory vector. Therefore, it is compatible with
any model that supports the KV caching mech-
anism. Lastly, in enables training the LM-VAE
model with the weights for the base pretrained mod-
els frozen, greatly reducing the computational and
memory requirements. Additionally, this scheme
allows distributed training of the injection layer, as
the projection matrices can be co-located with the
respective hidden layers in training time, and size

Z

WM .
.
.

.

.

.

xh
0

.

.

.

x0

.

.

.

xh
t-1

.

.

.

xt-1

.

.

.

xh
t

.

.

.

xt

. . .

. . .

. . .

. . .

Figure 4: Illustration of the KV cache injection scheme.
Wmz projects hidden KV cache entries Xh

t that are
attended by the decoder when predicting the next token.
The hidden cache entries are interleaved with the ones
produced by the decoder.

of context (number of hidden cache entries) can be
adjusted.

3.3 Main advantages & Limitations

The main advantages of LangVAE can be sum-
marised as follows:
• Modular architecture allows flexible development
of different LM-VAE configurations. Flexible com-
position of base models and bottleneck parametri-
sations, loss functions, etc.
• Compatible with most state-of-the-art autoregres-
sive models.
• Has a substantially reduced computational re-
quirements for training, compared to the SOTA
LM-VAE (Optimus), with an average parameter re-
duction of over 95% measured when using decoder
models between 3B to 7B parameters (Section 5.1).
• Supports multi-GPU training and inference.

Its main limitations are related to the cache in-
jection mechanism:
• Slower convergence, as there are far less parame-
ters to adjust.
• Latent vector sizes tend to be larger, compared to
Optimus, to compensate for the overall parameter
reduction.

3.4 Installation and API Examples

LangVAE can be installed directly from the PyPI
package repository with: pip install langvae

We briefly illustrate the key components of Lang-
VAE’s API and how they are instantiated in the
supplementary material (Appendix Section A.1). A
full example of model training can be found in the
README file of the code repository1 and on the

4

supporting python notebook4.

4 LangSpace: Simplified probing for
LM-VAEs

LangSpace2, is a companion framework to Lang-
VAE focused on the evaluation and on the latent
space probing for LM-VAEs. It provides an easy-
to-use API to perform a variety of analyses on pre-
trained LM-VAEs models, namely:
• Probes: vector arithmetic and interpolation, la-
tent space traversal, disentanglement and cluster
visualisation.
• Metrics: disentanglement (z-diff, z-min-var, MIG,
Disentanglement, Informativeness, Completeness),
interpolation (quality, smoothness).

4.1 Installation and API Examples

Like LangVAE, LangSpace can be installed from
the PyPI repository with: pip install langspace

We briefly illustrate below the use of one of
LangSpace probes: latent traversal. A full example
with all the available probes can be found within
this public notebook5

Seed sentences to traverse
sentences = [

"animals require food to survive",
"water vapor is invisible"

]
Dataset importer
ds = ListImporter()(

[sent.split() for sent in sentences]
).sentences
Create dataset tokeniser
seeds = TokenizedDataSet(

ds, model.decoder.tokenizer,
model.decoder.max_len

)
Create probe and generate report: a
dataframe with collumns for the
original sentence, traversed dimension,
distance traversed and the generated
result, respectively.
trav_report = TraversalProbe(

model, trav_dataset,
sample_size=10,
dims=list(range(128))

).report()

4https://bit.ly/3FMPg5N
5https://bit.ly/424bjw3

5 Case study & Model availability

To demonstrate LangVAE and LangSpace capabil-
ities and highlight the effects of different combi-
nations of encoder and decoder models, in terms
of generalisation and disentanglement of the latent
space, we conducted a set of experiments as a case
study. The experiments consist of a simple expla-
nation sentence modeling task (Zad et al., 2021;
Dalvi et al., 2021) with posterior evaluation of the
induced latent space. Pre-trained checkpoints for
all model combinations presented in this study are
available in our public HF Hub repository6.

5.1 Experimental setup
For the pre-trained LLMs, we selected three dis-
tinct encoder models, in order of parameter size:
BERT (base-cased) (Devlin et al., 2019), Flan-
T5 (base) (Chung et al., 2024) and Stella (en-
1.5B_v5) (Zhang et al., 2025), and four decoder
models: GPT-2 (base) (Radford et al.), Qwen (2.5-
3B) (Team, 2024), Llama (3.2-3B) (Grattafiori
et al., 2024) and Mistral (7B-v0.3) (Jiang et al.,
2023). The selection considered the inclusion of
different model families and sizes. For each com-
bination, inputs without and with semantic role
labeling (SRL) annotations were used (as semantic
features), where the SRL annotations were passed
as additional variables (one-hot encoded) to the
encoder only, going through a separate pooling pro-
cess (always mean pooling). The latent size (128)
and maximum sentence was kept the same for all
tests. All models were trained for 50 epochs, with
LR = 0.001, target_kl = 2.0, max_beta = 1.0,
40 beta annealing cycles, and batch size of 50. Dis-
entanglement measurements were obtained using
LangSpace’s disentanglement probe for the metrics
z-diff (Higgins et al., 2017), z-min-var (Kim and
Mnih, 2018) and Informativeness (Eastwood and
Williams, 2018).

All experiments were performed on a computer
with the following specifications: CPU: AMD
EPYC 7413 24-Core, GPU: 2x NVIDIA A100-
SXM4-80GB, Memory: 200GB. LangVAE allows
caching of the base encoder outputs, which causes
the training time to be mostly dominated by the
base decoder inference time. The shortest training
time was of aprox. 1h (GPT-2) and the longest was
about 4.5h (Mistral-7B). Training requirements for
larger decoders scale similarly to inference, with a
training run of Phi-4 (14B) also taking about 4.5h
6https://huggingface.co/neuro-symbolic-ai

5

https://bit.ly/3FMPg5N
https://bit.ly/424bjw3
https://huggingface.co/neuro-symbolic-ai

to complete. The ratios of the LangVAE trained
models’ size to the base LLMs was: GPT-2 =
0.547, Qwen2.5-3B = 0.024, Llama3.2-3B = 0.076,
Mistral-7B = 0.037. Excluding GPT-2, this repre-
sents an over 95% parameter reduction.

5.2 Data

The same data was used for all tests: a subset of
all explanatory sentences from the EntailmentBank
dataset (Dalvi et al., 2021), which was loaded us-
ing the saf-datasets7 library. The dataset contains
12496 sentences, from which 99% were used for
training and 1% for validation8. Evaluation was
performed on a random sample of 200 sentences
including the validation set and a small portion of
the training set.

SRL annotation was performed using the Al-
lenNLP9 library with a SOTA SRL model (Shi and
Lin, 2019).

5.3 Results

The results for the explanation sentence modeling
task are presented in Table 1. The first observation
is that the highest reconstruction performance was
achieved by the smallest model combination (for
SRL). While not the expected outcome, this can be
explained by the constraint imposed on the latent
space size, composed with the limited training data,
causing the simpler model to better generalise the
inputs.

The encoder complexity has a substantial impact
on the generalisation capability of the model: even
though bert-base-cased and flan-t5-base have the
same encoding size (768), BERT outperforms T5 in
most cases, indicating a higher level of information
entanglement on T5. Stella, on the other hand, has
a much larger encoding size (1536), with a larger
dominating effect based on the information loss
over the dimensionality reduction.

The injection of the SRL categories within the
model improved reconstruction performance in all
combinations except when Mistral is the decoder.
This is a surprising result and indicate some par-
ticularity of Mistral’s internal representations that
invite further investigation.

Finally, the SRL categories did not induce consis-
tent improvements on the disentanglement scores,

7https://github.com/neuro-symbolic-ai/saf_
datasets

8The validation split here is just a means to track the training
progress for overfitting, since the dataset is small.

9https://github.com/allenai/allennlp-models

Encoder Decoder Annot. Reconstr. Disentanglement
(BLEU) z-diff z-m-var ↓ inform.

BERT gpt-2 - 0.76 0.46 0.68 0.36
BERT gpt-2 SRL 0.84 0.43 0.70 0.40
BERT Qwen - 0.44 0.58 0.69 0.46
BERT Qwen SRL 0.49 0.53 0.61 0.44
BERT Llama - 0.65 0.62 0.71 0.38
BERT Llama SRL 0.80 0.59 0.65 0.43
BERT Mistral - 0.81 0.51 0.59 0.43
BERT Mistral SRL 0.75 0.55 0.62 0.44
Flan-T5 gpt-2 - 0.11 0.50 0.62 0.35
Flan-T5 gpt-2 SRL 0.81 0.62 0.67 0.42
Flan-T5 Qwen - 0.19 0.52 0.69 0.39
Flan-T5 Qwen SRL 0.31 0.55 0.68 0.43
Flan-T5 Llama - 0.74 0.52 0.68 0.49
Flan-T5 Llama SRL 0.80 0.59 0.64 0.41
Flan-T5 Mistral - 0.78 0.62 0.61 0.39
Flan-T5 Mistral SRL 0.72 0.51 0.63 0.43
Stella gpt-2 - 0.18 0.50 0.68 0.34
Stella gpt-2 SRL 0.61 0.52 0.65 0.40
Stella Qwen - 0.15 0.48 0.69 0.44
Stella Qwen SRL 0.27 0.54 0.66 0.43
Stella Llama - 0.45 0.51 0.73 0.40
Stella Llama SRL 0.64 0.62 0.72 0.42
Stella Mistral - 0.57 0.54 0.72 0.46
Stella Mistral SRL 0.55 0.51 0.71 0.39

Table 1: Results from the explanation sentence model-
ing experiments. Best values for each column in bold.

with the exception of Llama3.2, where it led to
qualitative improvements, as illustrated in Figure 5
(Appendix B).

6 Conclusion

In this work we presented LangVAE, a modular
and efficient library for building language model
VAEs (LM-VAEs), and its companion framework
LangSpace, dedicated to LM-VAE latent space con-
trol, probing and evaluation. With the goal of low-
ering the experimental barriers in this research area,
it introduces a novel approach for latent vector un-
pooling to autoregressive LMs that sharply reduces
the computational and memory requirements for
training such models, along with a flexible code ar-
chitecture which is oriented towards modern LLM
development.

We demonstrated the capabilities of LangVAE
and LangSpace with a set of experiments using dif-
ferent encoder and decoder combinations, as well
as annotated inputs, which reveal a wide range of
interactions across architectural families and sizes
w.r.t. generalisation and disentanglement. Such
interactions point to uncovered factors regarding
the models’ internal representation properties and
how they exchange information.

6

https://github.com/neuro-symbolic-ai/saf_datasets
https://github.com/neuro-symbolic-ai/saf_datasets
https://github.com/allenai/allennlp-models

References
Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,

Olga Vechtomova, Xinyu Dai, and Jiajun Chen. 2019.
Generating sentences from disentangled syntactic
and semantic spaces. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 6008–6019.

Loïc Barrault, Paul-Ambroise Duquenne, Maha El-
bayad, Artyom Kozhevnikov, Belen Alastruey, Pierre
Andrews, Mariano Coria, Guillaume Couairon,
Marta R Costa-jussà, David Dale, et al. 2024.
Large concept models: Language modeling in
a sentence representation space. arXiv preprint
arXiv:2412.08821.

Clément Bonnet and Matthew V Macfarlane. 2024.
Searching latent program spaces. arXiv preprint
arXiv:2411.08706.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Bengio.
2015. Generating sentences from a continuous space.
arXiv preprint arXiv:1511.06349.

Danilo Silva de Carvalho, Giangiacomo Mercatali,
Yingji Zhang, and André Freitas. 2023. Learning
disentangled representations for natural language def-
initions. In Findings of the Association for Computa-
tional Linguistics: EACL 2023, pages 1371–1384.

Clément Chadebec, Louis Vincent, and Stephanie Al-
lassonniere. 2022. Pythae: Unifying generative au-
toencoders in python - a benchmarking use case. In
Advances in Neural Information Processing Systems,
volume 35, pages 21575–21589. Curran Associates,
Inc.

Seunghyuk Cho, Juyong Lee, and Dongwoo Kim. 2023.
Hyperbolic vae via latent gaussian distributions. Ad-
vances in Neural Information Processing Systems,
36:569–588.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7358–7370, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas
Kipf, and Jakub M Tomczak. 2018. Hyperspher-
ical variational auto-encoders. arXiv preprint
arXiv:1804.00891.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Cian Eastwood and Christopher KI Williams. 2018. A
framework for the quantitative evaluation of disentan-
gled representations. In 6th International Conference
on Learning Representations.

Ghazi Felhi, Joseph Le Roux, and Djamé Seddah. 2022.
Towards unsupervised content disentanglement in
sentence representations via syntactic roles. arXiv
preprint arXiv:2206.11184.

Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi
Chen, and Asma Ghandeharioun. 2024. Interpretabil-
ity illusions in the generalization of simplified mod-
els. In Proceedings of the 41st International Confer-
ence on Machine Learning, pages 14035–14059.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Lingyuan
Zhang, Heng Gong, and Bing Qin. 2022. A distri-
butional lens for multi-aspect controllable text gen-
eration. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 1023–1043, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Lingyuan
Zhang, Heng Gong, Weihong Zhong, and Bing Qin.
2023. Controllable text generation via probability
density estimation in the latent space. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12590–12616, Toronto, Canada. Association
for Computational Linguistics.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, Matthew M. Botvinick,
Shakir Mohamed, and Alexander Lerchner. 2017.
beta-vae: Learning basic visual concepts with a con-
strained variational framework. In ICLR.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of hal-
lucination in natural language generation. ACM com-
puting surveys, 55(12):1–38.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

7

https://doi.org/10.18653/v1/2021.emnlp-main.585
https://doi.org/10.18653/v1/2021.emnlp-main.585
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.emnlp-main.67
https://doi.org/10.18653/v1/2022.emnlp-main.67
https://doi.org/10.18653/v1/2022.emnlp-main.67
https://doi.org/10.18653/v1/2023.acl-long.704
https://doi.org/10.18653/v1/2023.acl-long.704
http://arxiv.org/abs/2310.06825

Carina Kauf, Anna A Ivanova, Giulia Rambelli, Em-
manuele Chersoni, Jingyuan Selena She, Zawad
Chowdhury, Evelina Fedorenko, and Alessandro
Lenci. 2023. Event knowledge in large language
models: the gap between the impossible and the un-
likely. Cognitive Science, 47(11):e13386.

Hyunjik Kim and Andriy Mnih. 2018. Disentangling
by factorising. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
2649–2658. PMLR.

Diederik P Kingma, Max Welling, et al. 2013. Auto-
encoding variational bayes.

Jenny Kunz and Marco Kuhlmann. 2022. Where does
linguistic information emerge in neural language
models? measuring gains and contributions across
layers. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 4664–
4676.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun
Li, Yizhe Zhang, and Jianfeng Gao. 2020. Optimus:
Organizing sentences via pre-trained modeling of a
latent space. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4678–4699, Online. Association
for Computational Linguistics.

Guangyi Liu, Zeyu Feng, Yuan Gao, Zichao Yang, Xi-
aodan Liang, Junwei Bao, Xiaodong He, Shuguang
Cui, Zhen Li, and Zhiting Hu. 2023. Composable
text controls in latent space with ODEs. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 16543–16570,
Singapore. Association for Computational Linguis-
tics.

Yi Liu, Xiangyu Liu, Xiangrong Zhu, and Wei Hu. 2024.
Multi-aspect controllable text generation with disen-
tangled counterfactual augmentation. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9231–9253, Bangkok, Thailand. Association
for Computational Linguistics.

Giangiacomo Mercatali and André Freitas. 2021. Disen-
tangling generative factors in natural language with
discrete variational autoencoders. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 3547–3556, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

David Selby, Yuichiro Iwashita, Kai Spriestersbach, Mo-
hammad Saad, Dennis Bappert, Archana Warrier,
Sumantrak Mukherjee, Koichi Kise, and Sebastian
Vollmer. 2025. Had enough of experts? quantita-
tive knowledge retrieval from large language models.
Stat, 14(2):e70054.

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling. ArXiv,
abs/1904.05255.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Haoqin Tu, Zhongliang Yang, Jinshuai Yang, and
Yongfeng Huang. 2022. Adavae: Exploring adap-
tive gpt-2s in variational auto-encoders for language
modeling. arXiv preprint arXiv:2205.05862.

Jake Vasilakes, Chrysoula Zerva, Makoto Miwa, and
Sophia Ananiadou. 2022. Learning disentangled rep-
resentations of negation and uncertainty. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 8380–8397, Dublin, Ireland. Association
for Computational Linguistics.

Jialin Yu, Alexandra I Cristea, Anoushka Harit, Zhong-
tian Sun, Olanrewaju Tahir Aduragba, Lei Shi, and
Noura Al Moubayed. 2022. Interaction: a generative
xai framework for natural language inference expla-
nations. In 2022 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE.

Samira Zad, Maryam Heidari, Parisa Hajibabaee, and
Masoud Malekzadeh. 2021. A survey of deep learn-
ing methods on semantic similarity and sentence
modeling. In 2021 IEEE 12th Annual Information
Technology, Electronics and Mobile Communication
Conference (IEMCON), pages 0466–0472. IEEE.

Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong
Wang. 2025. Jasper and stella: distillation of sota
embedding models.

Yingji Zhang, Danilo Carvalho, and André Freitas.
2024a. Learning disentangled semantic spaces of
explanations via invertible neural networks. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2113–2134.

Yingji Zhang, Danilo Carvalho, Marco Valentino, Ian
Pratt-Hartmann, and André Freitas. 2024b. Improv-
ing semantic control in discrete latent spaces with
transformer quantized variational autoencoders. In
Findings of the Association for Computational Lin-
guistics: EACL 2024, pages 1434–1450.

Yingji Zhang, Danilo S Carvalho, Ian Pratt-Hartmann,
and André Freitas. 2023. Llamavae: Guiding large
language model generation via continuous latent sen-
tence spaces. arXiv preprint arXiv:2312.13208.

Yingji Zhang, Marco Valentino, Danilo Carvalho, Ian
Pratt-Hartmann, and André Freitas. 2024c. Graph-
induced syntactic-semantic spaces in transformer-
based variational autoencoders. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 474–489.

8

https://proceedings.mlr.press/v80/kim18b.html
https://proceedings.mlr.press/v80/kim18b.html
https://doi.org/10.18653/v1/2020.emnlp-main.378
https://doi.org/10.18653/v1/2020.emnlp-main.378
https://doi.org/10.18653/v1/2020.emnlp-main.378
https://doi.org/10.18653/v1/2023.emnlp-main.1030
https://doi.org/10.18653/v1/2023.emnlp-main.1030
https://doi.org/10.18653/v1/2024.acl-long.500
https://doi.org/10.18653/v1/2024.acl-long.500
https://doi.org/10.18653/v1/2021.findings-emnlp.301
https://doi.org/10.18653/v1/2021.findings-emnlp.301
https://doi.org/10.18653/v1/2021.findings-emnlp.301
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/v1/2022.acl-long.574
https://doi.org/10.18653/v1/2022.acl-long.574
http://arxiv.org/abs/2412.19048
http://arxiv.org/abs/2412.19048

A API examples

A.1 LangVAE
Creates a GPT-2 based decoder expecting
a latent vector of size 128, that
generates a maximum of 32 tokens,
distributed on any number of CUDA GPUs.
decoder = SentenceDecoder(

"gpt2", latent_size=128,
max_len=32, device="cuda",
device_map="auto"

)

Creates a BERT based encoder producing
a latent vector of size 128, expecting
GPT-2 tokenised inputs.
encoder = SentenceEncoder(

"bert-base-cased", latent_size=128,
decoder.tokenizer, device="cuda"

)

Defines a basic VAE model configuration
model_config = VAEConfig(latent_dim=128)

Initialise LangVAE model
model = LangVAE(

model_config, encoder, decoder
)

Alternatively, loads a pretrained
checkpoint from the HF Hub.
org = "neuro-symbolic-ai"
name="eb-langvae-flan-t5-base-gpt2-l128"
model = LangVAE.load_from_hf_hub(

f"{org}/{name}"
)

B Qualitative results

We present here qualitative results that did not fit
in the main text.

(a) No annotation

(b) SRL annotation

Figure 5: TSNE plots for the [bert-base-cased, Llama-
3.2-3B] combination, without (a) and with (b) SRL an-
notated inputs. We can observe a better separation of
the water and animal subjects on the annotated model.

9

Source Target Distance Generate

the high seas the continent 0.361

1. the high
2. the high
3. the sea
4. the sea
5. the sea
6. the sea
7. the sea
8. the land
9. the world
10. the world

a primary schooler a college student 0.299

1. a primary school
2. a primary school
3. a junior school
4. a junior school
5. a high school
6. a high school
7. a high student
8. a college
9. a college
10. a student

Table 2: Interpolation example using a LangVAE model
trained on the Wiktionary dataset. Ten points connecting
from the source to the target latent vectors are decoded
to generate a list of interpolated sentences. We can
observe a semantic progression when connecting terms
for which there are intermediate senses.

10

	Motivation and Purpose
	Language Model VAEs
	Optimus

	LangVAE: Building modular LM-VAEs
	Architecture
	KV cache injection
	Main advantages & Limitations
	Installation and API Examples

	LangSpace: Simplified probing for LM-VAEs
	Installation and API Examples

	Case study & Model availability
	Experimental setup
	Data
	Results

	Conclusion
	API examples
	LangVAE

	Qualitative results

