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Credit analysis is a real-world classification problem where it is quite common to find datasets with a
large amount of noisy data. State-of-the-art classifiers that employ error minimisation techniques, on the
other hand, require a long time to converge, in order to achieve robustness. This paper explores Clus-
WiSARD, a clustering customisation of the WiSARD weightless neural network model, applied to two
different credit analysis real-world problems. Experimental evidence shows that ClusWiSARD is very
competitive with Support Vector Machine (SVM) w.r.t. accuracy, with the advantage of being capable of
online learning. ClusWiSARD outperforms SVM in training time, by two orders of magnitude, and is
slightly faster in test time.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Credit analysis represents the complex tasks of deciding which
credit applicants present a good probability of returning the
granted credit and which do not. This task depends on many dif-
ferent factors, such as economic and cultural circumstances, and is
often delegated to human experts. Human judgement, however,
may not use explicit rules that can be referenced as basis for
decision making. That could lead to conflicting analysis of the
same problem instance from different experts. In some countries,
this is considered illegal. This question would justify the design of
a machine learning system that is able to replace the decisions of
experts, providing a single analysis standard.

Important pattern recognition challenges can be found in credit
analysis. For example, data can be noisy or corrupted due to pro-
blems in data collection. Data could also embed temporal infor-
mation, possibly useful to identify concept drift: movement of
populations, changes in economy, natural catastrophes [1], general
news [2], etc. These and other factors may affect the relations
pertinent to credit assignment. Class imbalance is also expected, as
credit applications labeled as “good” are more frequent than
“bad” ones.

How observations were gathered and labeled is also note-
worthy. Labelling could be done a priori, according to a risk
ouza).
appraisal system already in use. Alternatively, this could be per-
formed after observing if payment of granted requests was duly
realised. A system trained with data from the first case aims to
reproduce the behaviour of the established classification system,
instead of attempting to excel it. In the second case, training data
is the product of a filtering process, implying in a reduction of
information about the population.

Different machine learning techniques have been analysed in
the context of this problem. As discriminated by Tsai [3], they may
be classified in three smaller sets, which are: single classifiers,
classifier ensemble and hybrid classifiers. The first one contains
single supervised models, like Support Vector Machine (SVM) [4–
8], Multilayer-Perceptron (MLP) [9,4,10], Decision Trees (DT) [11]
and Genetic Algorithm/Programming (GA/GP) [12,13]. Regarding
classification accuracy over the UCI dataset, which was also used
in this work, some results obtained were 77.34% by Ong, Huang
and Tzeng [13] with the use of GP and 77.09%/76.59% by Tsai [4]
with SVM and MLP, respectively. These models have achieved at
most an accuracy of 77.34% working as single classifiers. However,
they may achieve much better results when grouped together,
forming classifier ensembles. For instance, Ghodselahi [14] has
obtained 81.42% with the use of a SVMs ensemble, and Hoffmann
[15] has reached 84.90% with a GA-based SVM. Some other
approaches used GA-based MLP [16] and GA-based SVM [17] in
other financial credit analysis datasets. The third category, called
Hybrid Classifiers, contains approaches mixing two or more
techniques. For instance, combining clustering and single classi-
fiers. Previously a work [3] compared many different approaches
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and claimed to achieve up to 88.93% through the use of clustering
and SVM. Since ClusWiSARD is an intrinsic clustering WiSARD
classifier, it retains the single classifier characteristic. Therefore, its
results are comparable with other single classifier approaches.
Besides, this model could later be further improved through the
use of other techniques, like ensemble learning and GA.

Financial institutions may lend money to different types of
entities (people, businesses, non-profits, among others) and under
various sets of conditions. This makes the context of credit analysis
very diverse, with specialized methods in constant development
for each category of credit operation. This work focuses on the case
of retail credit, i.e., when the credit is given directly to the con-
sumer (a person) rather than an organization. Retail credit analysis
is mostly done by means of credit scoring [18], which has been the
standard practice for decision making in credit risk management
for the past 35 years in the US, UK and some other countries [18].

The purpose of credit scoring revolves around the ability to
rank a prospective customer in a given set of categories, in order to
assess the probability of timely payment of the debt over a period
of time. As a result, a “grade” is given to the customer, which will
serve to classify him or her as being a probable good or bad payer
and thus facilitating the decision of giving the credit or not. Such
“grades” are dependent on the method used for scoring, usually
being an number but “good” and “bad” categories are also often
used. The scoring methods are usually divided into two categories:
statistical and non-statistical. The first category includes techni-
ques such as logistic regression and discriminant analysis, with
uses dating back from the beginning of credit scoring activities.
The second category includes a wide range of computer backed
algorithms such as neural networks, linear programming and
genetic algorithms. Advances in machine learning research and
computational capabilities over the past decades have promoted
significant increases in predictive accuracy for many non-
statistical methods, boosting their adoption, although use of sta-
tistical methods has not been abandoned [19]. More sophisticated
non-statistical methods, such as ensembles, have shown a boost in
adoption after the 2008 financial crisis, which resulted in restric-
tions regarding retail credit provision [20]. The method presented
in this paper is non-statistical and is compared to another method
of the same category for illustration of its capabilities. The method
chosen for comparison is the support vector machine (SVM) which
is often used for the scoring task.

Having an automated learning and classification mechanism
that could offer a more precise solution is an attractive idea. It
must be able to analyse vast amounts of data on credit applications
and consider subtle relations between the actual financial data and
the borrower profile. However, such mechanism would also need
to be both efficient and robust in order to account for changes in
the circumstances and sample biasing. Two classifying mechan-
isms which have potential to exhibit these characteristics are the
WiSARD [21] weightless artificial neural network model and the
Support Vector Machine (SVM) [22], which are introduced,
respectively, in Sections 2.1 and 2.2. This work proposes the
application of WiSARD weightless neural network model for the
credit analysis problem, both in its traditional form, targeting
simpler scenarios, as well as in a clustering oriented architecture,
called ClusWiSARD, in order to deal with more complex ones.
Preprocessing methods for the data analysis are also discussed. For
comparison purposes, the same data is classified by a Support
Vector Machine.

This paper is organized as follows. Section 2 presents the
methods and materials used for this research, including classifier
models (Sections 2.1 and 2.2) as well as data set handling (Section
2.3); Section 3 details metrics and implementation of the experi-
ments, shows their results and discusses some of the interesting
findings; Section 4 concludes this work by summarising the
findings and present possible avenues for further work.
2. Methodology

2.1. WiSARD

A Weightless Artificial Neural Network (WANN) is a pattern
recognition system whose main difference from other learning
methodologies lies on the direct use of information storage in
Random Access Memories (RAMs) [21]. No error minimisation
technique is used. WANN operation uses the input to build a set of
addresses to access RAM nodes contents.

This work adopts WiSARD (Wilkie Stonham and Aleksander
Recognition Device) [21], a pioneering WANN architecture that is
composed by distinct sets of RAM nodes called discriminators. Each
discriminator is assigned to one of the classes of patterns to be
recognized, i.e., the number of discriminators in the WiSARD network
is the same as the number of classes. A discriminator consists of a
single layer of RAM nodes, which are all initialised with the default
value zero (0) in every addressable position. The network has also
been extended with a tie breaking capability, called bleaching [23], in
order to deal with inconclusive pattern classifications. With respect to
this work, WiSARD speed was very useful: all its operations have
polylogarithmic complexity on the number of input observations.
Additionally, that only requires a small number of parameters to be set.

2.1.1. Input encoding
WiSARD is, originally, a Boolean neural network, so any input

given to the architecture must be converted into a binary string.
However, the most common description of data is by numerical
and/or categorical attributes. A data conversion process must be
applied to bridge this gap. This process may not be straightfor-
ward, as the similarity between any two observations should be
preserved in the new representation. The preferred binary
encodings for numeric features are the ones with a Hamming
distance related to the numeric distance. Encodings which do not
have this characteristic, e.g., IEEE 754 [24], should be avoided.

This conversion can be tuned with respect to a number of factors,
such as domain knowledge and classifier performance on tests. After
the conversion is made, the input is shuffled according to a fixed
pseudorandommask (defined at the creation of the network) and split
to generate input addresses of all RAM nodes. During the training
phase, some memory locations at the RAM nodes in the discriminator
corresponding to the trained class are accessed according to each input
pattern. Each access increments by one the value stored in the
respective location. During the classification phase, every discriminator
retrieves the information addressed by the input pattern. Each RAM
node accessed this way outputs one (1) if the memory position in
question holds a value higher than the bleaching threshold, and zero
(0) otherwise. A discriminator response is the sum of the outputs of
each of its RAM nodes, as seen in Fig. 1. In a WiSARD multi dis-
criminator arrangement, the discriminator with the highest response
is chosen for the classification, as depicted by Fig. 2. If two or more
discriminators share the highest response then the bleaching thresh-
old must be incremented by one and a new classification iteration is
performed. Training and classification can be interleaved during run-
time. By doing so, WiSARD can be employed in continuous (online)
learning tasks.

2.1.2. Comparison with other learning models
WiSARD may resemble other learning models in some aspects,

while being intrinsically different in others. Bayesian classifiers
[25] also learn by counting occurrences of events regarding attri-
butes values, but without explicit use of binary features. Curve
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Fig. 1. WiSARD discriminator (from left to right): binary input, pseudo random
mapping, addressing RAM contents, summation and output.

Fig. 2. A WiSARD multidiscriminator system.

Fig. 3. ClusWiSARD multidiscriminator system. An example of a pattern In being
presented to the microclusters. Each microcluster contains a number corresponding
to the quantity of samples stored in it. The darker bar on the right represents the
cluster's threshold, while the gray bar corresponds to the pattern activation.
Observe that the discriminator containing 8 samples is the one that will learn the
new observation.
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fitting is a principle shared between a variety of models: support
vector machine [22], multilayer perceptron [26] and others.
WiSARD does not employ this strategy, being identified as a
weightless neural network.

2.1.3. ClusWiSARD
The combination of very different input patterns of the same

category in a WiSARD discriminator can enable the improper
recognition of test patterns very dissimilar from those learned
previously by this unit. This is a consequence of the multiplicative
nature of WiSARD that performs pattern classification based on
the identification of previously seen patterns using stored collec-
tions (discriminators) of collections (RAM nodes) of features fre-
quency logs (RAM contents). ClusWiSARD avoids this by creating
clusters of input patterns, according to an acceptance threshold
associated to each of them. This threshold is proportional to the
number of elements in the cluster, i.e., the number of observations
a discriminator has learnt. Dynamic thresholding works as a policy
to prevent discriminator saturation, making harder the learning of
new observations by a discriminator which possibly is capable of
recognising any observation after numerous recordings.

Therefore, the main novelty of ClusWiSARD lies in its knowl-
edge storage, which uses a group of discriminators per class. This
allows for the distribution of training data into discriminators that
better represent natural clusters, i.e., by capturing sub-patterns as
“sub-classes”. For each training input pattern, if any of the dis-
criminators of this pattern class gives a recognition response
higher than its acceptance threshold, the pattern is learned by
such discriminator. If no discriminator accepts the new input
pattern, a new discriminator is created to learn it. Classification
with ClusWiSARD is similar to the original WiSARD: the input is
tested with all discriminators; if there is a tie, a bleaching process
occurs. The class of the discriminator with the highest response is
chosen for the input. Fig. 3 illustrates how ClusWiSARD works.
Algorithm 1 describes ClusWiSARD training procedure.
Algorithm 1. ClusWiSARD algorithm.
quire s¼minimum score
quire γ ¼ threshold growth interval
quire T ¼ training data
sure C is a trained ClusWiSARD classifier

C’ClusWiSARD instance
for each observation oAT do
for each discriminator d currently in C do ▹ random order

iteration
if classðoÞ ¼ classðdÞ and

scoreðd; oÞZminð1; sþsizeðdÞ=γÞ then
Discriminator d learns observation o
sizeðdÞ’sizeðdÞþ1
end if

end for
if no discriminator learned observation o then

A new discriminator d0 is created
d0 is added to the collection of discriminators of C

classðd0Þ’classðoÞ
Discriminator d0 learns observation o
sizeðd0Þ’1

end if
end for
Return C
17:

It is worth noticing that scoreðd; oÞ is nothing more than the
recognition score a discriminator d provides to a given observation
o. This operation is in its original form, having a computational
cost of Oðjdj Þ, where jdj is the number of neurons in d. Therefore,
in the worst case, each discriminator provides this score, resulting
in a total training cost of Oðjdj � jCj � jT j Þ, where jCj is the number
of discriminators the system keeps and jT j is the number of data
observations used during training.

Compared to WiSARD, ClusWiSARD introduces two new para-
meters: s, minimum score, and γ, threshold growth interval. s
defines the minimum value of scoreðd; oÞ, which allows an obser-
vation o to be associated to a cluster d. In other words, it estab-
lishes the maximum distance between the boundaries of the
cluster and an observation whose addition is being considered.

γ, the second parameter, is a consequence of the fact that as a
discriminator learns more observations, the knowledge it keeps is
probabilistically extended. From another point of view, the region
of the feature space covered by the represented cluster has a
chance to grow every time a new observation is included. This



Fig. 4. Example of unary (thermometer) encoding for a 10-bit bit string. Natural
distance proportionality is preserved in the Hamming distance between the
encoded values. Larger distances imply a greater contrast between values.
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prompts an adjustment of the maximum “distance” mentioned in
the previous paragraph. Therefore, the size of the clusters is clo-
sely related to the value of γ: as it gets lower, clusters reach their
growth ceiling faster.

Setting the minimum score to zero and the threshold growth
interval to infinity makes ClusWiSARD behave like the original
WiSARD. In a good setup, these parameters avoid the definition of
clusters with excessively dissimilar observations, as well as with
few observations that do not characterize data patterns. In this
work such parameters were set in an ad hoc manner.

2.2. SVM

The support vector machine (SVM) [22] constitutes a successful
supervised learning model. Its main intuition lies on choosing a set
of points to delimit a set of maximum-margin hyperplanes, cap-
able of separating the input data in a class-nonclass fashion. This
set of points is usually considerably small when compared to the
training set and are called support vectors. A small set of support
vectors implies in a small VC dimension, conferring a good gen-
eralisation capability to the system.

Credit analysis is a complex problem, whose data is not linearly
separable. In such situations, SVM maps the input vectors x into a
featural space Z through a nonlinear mapping chosen a priori. This
mapping is also called the kernel trick. Some common kernel
functions kðxi; xjÞ include: (i) linear: kðxi; xjÞ ¼ x>

i xj; (ii) poly-

nomial: kðxi; xjÞ ¼ γx>
i xjþc

� �d; (iii) Gaussian radial basis function:
kðxi; xjÞ ¼ e�γ Jxi �xj J 2

; and (iv) hyperbolic tangent: kðxi; xjÞ ¼
tanh γx>

i xjþc
� �

, where c, d and γ are parameters chosen a priori,
and xi and xj are observations from the input sample.

Finally, some data are not separable due to noise. Using a
higher-order kernel would overfit the model. Soft-margin SVM
[22] is a variation of SVM capable of handling noise-affected data.
In this variation of SVM, some data are not considered during the
creation of the hyperplanes.

2.3. Datasets

This work uses two different data sets on credit analysis, with
the purpose of evaluating different credit scoring scenarios:

2.3.1. UCI
The German Credit Data data set is part of the Statlog project,

hosted at the UCI machine learning repository [27]. The data set
consists of 1000 credit requests records, described by 20 attri-
butes. These requests were classified as either of low (700 obser-
vations) or high (300 observations) risk by human experts. Given
the lack of explicit rules to explain decisions, two different experts
could classify the same applicant differently. This inconsistency
could be considered a flaw of the financial institution operation.
Therefore, a challenge presented by this data set is the reproduc-
tion of experts judgement by a computational learning system.

2.3.2. BRICS-CCI
This data set comes from the BRICS-CCI & CBIC Computer

Intelligence Algorithm Competition [28]. It contains the data of
credit applications from 2009 and 2010, labelled with the status of
the approval. Temporal information is included in the dataset,
enabling tracking of concept drift. Each entry corresponds to a
credit request from a client of a private credit card retail chain,
labeled as “good” or “bad” depending on the posterior payment
behaviour. A client is considered “bad” if he or she defaults the
debt for more than two consecutive months, and considered
“good” otherwise. Attributes for each entry include age, gender,
net income, among others, totalling 40 variables. However, some
of the non-numerical original variables were converted into col-
lections of simpler ones. Besides, new variables were generated
after relating available data to publicly accessible external infor-
mation. In the end, a total of 463 attributes was used.

2.4. Data preprocessing

As in many applications, data preprocessing may improve the
classifier performance. In this paper, three aspects of data analysis
concerning preprocessing are covered: noisy data correction,
attribute influence evaluation and optimal encoding. Next, a
description of the data and the treatment proposed for each pre-
processing aspect under consideration are presented.

Attributes could be divided into nominal, (categorical) ordinal
and (interval) numerical ones. Nominal attributes values have no
order and are equidistant pairwise. The non-binary categorical
features are encoded as a set of binary variables. If a non-
numerical feature f may have n different values, then it is trans-
formed into n binary features. A value of f¼ i implies that the value
of the i-th corresponding binary feature is 1 while the others are
�1. A collection of values of an ordinal attribute can be ranked,
and the similarity between two values is inversely proportional to
their rank distance. Numerical values can be compared directly
according to their difference.

As already stated in Section 2.1, the WiSARD model accepts a
bit string as input. For this reason, given any input observation, the
values of each of its attributes are transformed into bit strings by a
procedure called encoding. The concatenation of these strings is
then input to ClusWiSARD. A specific encoding procedure is
applied to each attribute according to its type.

2.4.1. Numerical and ordinal attributes
Encoding of numerical attributes is performed as follows:

values were first scaled to a ½0; x� interval and then rounded to
nearest integer, where x is manually defined. Next, this integer was
represented in the unary numeral system (base-1, thermometer).
This unary representation with padding zeros on the left is the
result of this conversion procedure. Ordinal attributes are encoded
like numerical ones, after the substitution of the original values by
their respective positions in the rank of all values of each attribute.
Fig. 4 illustrates the conversion to the unary system.

Such representation, and the scaling and rounding required to
obtain it, means that the original attribute values were divided in x
ordered intervals. Each interval is thus represented by a unique bit
string. As an intended consequence of this conversion, the Ham-
ming distance [29] between resulting binary representations of
two values is proportional to their numerical difference.

The value of x is the actual number of bits that represent each
numerical feature. It is empirically chosen by balancing the trade-



Fig. 5. Example of equidistant set of 8-bit bit strings for a subset of the values of
the attribute “credit purpose”, with Hamming distance 4. The absence of natural
order or distance between values is preserved by making the contrast between the
encoded values equivalent pairwise.
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off between information given to the classifier and complexity of
the system. In other words, by determining the number of
operations needed to be performed during each training or clas-
sification given the number of the RAM neurons in each dis-
criminator. If a very small amount of bits is used to represent each
feature, the classifying capability of ClusWiSARD may get
impaired, i.e., its accuracy may decrease. On the other hand, if a
very large number of bits is used, ClusWiSARD classifying cap-
ability will not be impaired, but time spent in the training phase
may grow considerably. Since the number of RAM neurons grows
linearly with the number of inputs (the addresses built from the
inputs have a fixed length; see Section 2.1.1), the time spent in
each operation will also increase proportionally.

2.4.2. Nominal attributes
For a nominal attribute, the binary representations of its values

are defined considering the following goal: to maximize the
minimum Hamming distance between any pair of representations.
Nominal values are as far as possible from each other, and that
should be true regardless of how they are represented. The
resulting bit strings must have a fixed length, and larger distances
imply a greater contrast between bit strings, making them more
distinguishable. The encoding procedure should account for that.
Fig. 5 illustrates a set of equidistant bit strings which are also as far
as possible from each other.

As nominal attributes assume a small number of possible
values in the credit analysis problem, a simple brute-force algo-
rithm (Algorithm 2) was used to generate a set of tentatively
equidistant bit strings of fixed length. Although the algorithm does
not guarantee that the distance between all pairs are equal, it
generates a set where the minimum distance between any pair of
elements is as high as possible: through the algorithm iterations, a
constraint regarding the targeted minimum distance is relaxed as
needed. This process can be repeated until the distance cannot be
decreased or all the values are converted.

Algorithm 2. Algorithm for encoding nominal attribute values.
Re
Re
En

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20
21:
22
23
quire n, number of nominal values to encode

quire x, length of the bit strings

sure s, a set of bit strings to represent nominal

values

t’0000…00 ▹t is a string of n zeroes
s’ftg ▹s is a unitary set containing t
n’n�1
if n40 then
t’0111…10 ▹t is a string of n ones
s’s [ ftg
n’n�1

end if
d’⌊x=2c ▹ Minimum distance between elements of s
while n40 do
for v¼ 1 to 2n�2 do

w’binðvÞ ▹w is the zero-padded binary repre-
sentation of v

d0’minxA sfhamming_distanceðw; xÞg
if d0 ¼ d then
s’s [ fwg
n’n�1
if n¼0 then

return ▹ Done
end if

: end if
end for

: d’d�1 ▹ Relaxing target minimum distance
: end while
The encoding chosen for representing m possible values
determines the minimum number of bits required for representing
them. Regardless of the encoding, at least n¼ ⌈log 2 m⌉ bits are
necessary to assign a different code to each of the m values. To
assure that the Hamming distance between any two codes is equal
or greater than 2d, n¼md is a trivial upper bound of the minimum
value of n which allows such condition. However, it is possible to
have lower values of n such that this condition is still reachable.
The applicability of Algorithm 2 is directly related to such
possibility.

2.4.3. Encoding tuning
For both numerical and nominal features, an optimal length of

their binary representations was chosen by repeating the experi-
ments with increasingly larger values until classifying accuracy
could no longer be improved. This was possible due to the low
training time characteristic of ClusWiSARD, which was also
exploited for feature selection on the UCI dataset experiment
(Section 3.1).

It is also reasonable to expect that the attributes contribute
differently to the classification task and that the dataset contains a
large number of attributes with small or no contribution. To
address this and possibly reduce the number of attributes, a study
was conducted on the degree of influence of each attribute over
payment behaviour. The information gain ratio [30] was used to
adjust input encoding to ClusWiSARD, varying the number of bits
to represent each attribute according to the calculated ratio. The
same procedure was used to filter which attributes should be used
to describe data which was input to SVM, whenever using all data
is unfeasible. Fig. 6 shows an example of this filtering, applied to
the BRICS-CCI dataset.
3. Experimental evaluation

On both data sets SVM and ClusWiSARD were compared with
respect to binary classification performance and speed. The fol-
lowing SVM parameters were adjusted: degree, C and kernel
function. The first two were adjusted after testing different values
in a range, while the kernel function was manually chosen. The
address length of the RAM nodes of ClusWiSARD was also chosen
after testing a set of options in a range.



Fig. 6. Information gain ratio of the attributes of the BRICS-CCI dataset. The first
one hundred attributes having the highest information values were chosen.

Fig. 7. Confusion matrix structure.

Table 1
UCI dataset: comparison between ClusWiSARD and SVM. Five best combinations of
attributes followed by all attributes accuracies and F1 scores for each class.

Rank ClusWiSARD SVM

Accuracy F1 (Good) F1 (Bad) Accuracy F1 (Good) F1 (Bad)

1 0.767 0.841 0.563 0.765 0.843 0.540
2 0.766 0.841 0.554 0.767 0.844 0.542
3 0.763 0.839 0.556 0.763 0.845 0.494
4 0.765 0.841 0.552 0.761 0.840 0.533
5 0.759 0.836 0.544 0.722 0.848 0.547

All 0.754 0.841 0.458 0.770 0.849 0.522

Table 2
Confusion matrix of UCI dataset for the best combination of attributes.

Actual ClusWiSARD SVM

Good Bad Good Bad

Good 620 80 625 75
Bad 155 154 164 136

D.O. Cardoso et al. / Neurocomputing 183 (2016) 70–78 75
Accuracy and F1 score were adopted as metrics. The F1 is
intended to tackle the imbalance between the two classes: accu-
racy might allow a higher score if the classifier favours the class
with more elements. Two F1 scores were used, since the F1 score
depends on a single class defined as the gold standard and because
this standard depends on the reason of the classification process.
These score are F1 (good) and F1 (bad), which are the F1 score
values when the good and the bad payers respectively are the gold
standard. Additionally, a weighted F1 score is used as a criterion for
a gold-standard-independent feature selection. Considering Fig. 7
values, these are the mathematical definitions of the metrics:

Accuracy¼ aþd
aþbþcþd

F1ðgoodÞ ¼ G¼ 2a
2aþbþc

F1ðbadÞ ¼ B¼ 2d
2dþbþc

Bad ratio¼ β¼ aþb
aþbþcþd

Good ratio¼ γ ¼ cþd
aþbþcþd

Weighted F1 score¼ γGþβB

3.1. UCI

Compared to the BRICS-CCI dataset, this data set has a small
number of variables and observations. This pair of conditions
enabled brute-force feature selection. Table 1 compares the results
found by the ClusWiSARD and the SVM classifier using the five
best combinations of attributes found exhaustively; this was only
possible due to ClusWiSARD's agility. The classifiers performance
when using all attributes is shown in the last line of Table 1. While
both models presented higher accuracies and F1 scores when using
the best selected attributes, it was the ClusWiSARD model who
benefited most in both metrics. Values presented in Table 1 are the
average results of ten thousand random 10-fold cross validation
runs. Table 2 presents the confusion matrix for each model using
the best selection of attributes that produced the best results.

3.2. BRICS-CCI

Credit data is influenced by macroeconomical factors and
events, which could be seasonal or not. What characterizes a credit
request as good or bad is related to when it was submitted, this is
called concept drift. In order to deal with this factor, the perfor-
mance of the classifiers was evaluated using the observations of
each month in a two-year span; training of monthly observations
is performed using data from the previous three months. There-
fore, the first three months of 2009 were not used as test targets.

In order to determine the best SVM parameters for this specific
problem, a second dataset composed of 12,000 observations was
created. This dataset was randomly generated from the original
one with five hundred observations for each month. Once this
dataset was ready, multiple instances of SVM networks were
trained varying its parameters. These consisted of the kernel
function used (Polynomial, RBF and Sigmoid) along with their
configuration parameters: γ, coef0 and degree for Polynomial; γ for
RBF; and γ and coef0 for the Sigmoid kernel. In the end, the
polynomial kernel function presented the best results. The con-
figuration had a degree of 3, coef0 equal to zero and the value for γ
was approximately 0.01509, according to the equation:

kðu; vÞ ¼ ðγ n uT
n vþcoef0Þdegree ð1Þ

The parameters u and v from the kernel function are two
samples from the training set passed to the kernel. An extended
description about the meaning of the kernel function and how
they are used can be found in [22]. Both classifiers were optimised
according to the average per-class accuracy. This was preferred
over the general accuracy because of the great difference in the
dataset share between classes, which, however, does not represent
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a greater significance of one class compared to the other. Notice
that predicting all observations as being of the biggest (“good”)
class would result in a good general accuracy. On the other hand, a
high average per-class accuracy could also be a sign of overfitting.

As seen in Fig. 8(a), SVM performs very competitively with Clus-
WiSARD in the BRICS-CCI dataset when considering the final accuracy,
aside from the first four months. During these first months, the latter
performed considerably better. However, despite losing in general
accuracy SVM shows consistently better discrimination capabilities for
bad payers, as seen in Fig. 8(c), which shows the F1 scores obtained
when the bad payers are the gold standard. On the other hand,
ClusWiSARD shows a better discrimination capability for good payers,
Table 3
BRICS-CCI dataset: comparison between ClusWiSARD and SVM.

Month & Year ClusWiSARD SVM

Accuracy F1 (Good) F1 (Bad) Accuracy F1Good) F1 (Bad)

Apr 2009 0.613 0.713 0.406 0.626 0.538 0.596
May 2009 0.643 0.749 0.383 0.647 0.604 0.537
Jun 2009 0.693 0.799 0.351 0.694 0.708 0.484
Jul 2009 0.705 0.811 0.329 0.704 0.757 0.472
Aug 2009 0.690 0.793 0.380 0.685 0.783 0.487
Sep 2009 0.667 0.771 0.392 0.655 0.799 0.491
Oct 2009 0.671 0.778 0.366 0.660 0.803 0.476
Nov 2009 0.682 0.785 0.387 0.676 0.785 0.490
Dec 2009 0.683 0.788 0.373 0.684 0.774 0.479
Jan 2010 0.697 0.801 0.367 0.688 0.786 0.458
Feb 2010 0.702 0.806 0.365 0.696 0.783 0.455
Mar 2010 0.682 0.787 0.374 0.675 0.779 0.469
Apr 2010 0.682 0.786 0.381 0.680 0.784 0.475
May 2010 0.659 0.759 0.417 0.656 0.756 0.520
Jun 2010 0.649 0.752 0.398 0.641 0.730 0.506
Jul 2010 0.688 0.792 0.371 0.683 0.737 0.484
Aug 2010 0.656 0.758 0.404 0.650 0.712 0.505
Sep 2010 0.653 0.756 0.402 0.644 0.732 0.500
Oct 2010 0.643 0.745 0.403 0.641 0.721 0.523
Nov 2010 0.631 0.730 0.420 0.631 0.680 0.551
Dec 2010 0.622 0.715 0.441 0.618 0.657 0.549

Fig. 8. Classification performance measures: SVM and ClusWiSARD over the BRICS-CCI d
especially on the first four and on the last sevenmonths, as depicted in
Fig. 8(b). Table 3 shows a more detailed representation of the values
presented in Fig. 8 for reference purposes. Table 4 presents the con-
fusion matrix for each model.

Additionally, Fig. 9 shows that ClusWiSARD performed clearly
faster than SVM in both training and classification times, especially
during training step. Fig. 9(a) shows that the training time of Clus-
WiSARD grows linearly with the number of observations and is
3 orders of magnitude lower than the one that of SVM, which grows
exponentially. Nonetheless, it is important to note that SVM internally
adjusts the relative contribution of each attribute to the classification
function, while WiSARD and ClusWiSARD use the previously calcu-
lated information gain ratio for this end, as explained in Section 2.4.

Furthermore, Fig. 10 shows a comparison using different frac-
tions of the BRICS-CCI dataset from its original size to 1/1024 of it.
Fig. 10(a) illustrates time spent during training, while Fig. 10
(b) shows the same information for classification. In both situa-
tions the plots show that the time spent by SVM increases faster.
4. Conclusion

Credit analysis is an interesting problem since many important
challenges such as large datasets, concept drift, class imbalance, and
noisy data, are present. Data preprocessing was a very important step
in the classification job performed both by ClusWiSARD and by SVM.
The transformation of input data into binary patterns, a step required
ataset. (a) General accuracy. (b) F1 score for good payers. (c) F1 score for bad payers.

Table 4
Confusion matrix of BRICS-CCI dataset.

Actual ClusWiSARD SVM

Good Bad Good Bad

Good 394,126 126,150 341,475 178,801
Bad 112,595 77,485 64,134 125,946



Fig. 9. Time spent: SVM and ClusWiSARD over the BRICS-CCI dataset. (a) Training time. (b) Classification time.

Fig. 10. Time spent: SVM and ClusWiSARD over reduced BRICS-CCI dataset.
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for weightless neural models, like ClusWiSARD, brings another
interesting dimension to the target problem.

ClusWiSARD presented accurate results that were close to SVM, a
natural choice as a classifier standard. Besides, ClusWiSARD dis-
played the ability of dealing with class imbalance as well. The main
contribution of this work is to show that ClusWiSARD is able to
achieve online training agility while keeping SVM-like performance.
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