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Some language interpretation tasks require additional levels of 
safety and control.

While Language Models (LMs) have provided a flexible foundation 
for addressing a diverse spectrum of tasks, can we develop 
language representation/models with more granular levels of 
control and interpretability?

Provocative question: Is it sufficient to assume that LMs will build 
rigorous representation of reality and language use?

Motivation



Critical applications: medicine, law, decision support, etc.

But also: end-user facing applications.

Motivation



Inclusion criteria
 •  Patients with a history of chemotherapy treatment within the last 24 months.
 •  Age ≥ 60 years
 •  HER2-positive T1 histologically confirmed invasive carcinoma of the breast. 
 •  Body weight > 110 lbs
 •  Patients be California residents

Exclusion criteria
 •  Pregnant women

Clinical Trial Report -  Eligibility Criteria

Patients living in the San Francisco area with ErbB2+ breast cancer, a body weight > 60 
kg, and a history of treatment with Cyclophosphamide in the last year, are eligible for this 

clinical trial.

Q: How do models represent these concepts?
Q: Do they deliver consistent conceptual inference?



BRCA2 protein is a tumour 
suppressor involved in HRR.

BRCA2 is a human gene that 
encodes the BRCA2 protein.

BRCA2 promotes the assembly of RAD51 
homolog 1 onto SS DNA in HRR.

BRCA2 is a human protein involved in HRR.

BRCA2 and RAD51 homolog 1 are both 
involved in HRR in humans.

The binding of BRCA2 and RAD51 homolog 1 catalyzes the 
joining of undamaged homologous molecules.

HRR is the primary process for 
repairing DNA double strand breaks.

HRR repairs damage to DNA using information 
copied from a homologous undamaged molecule.

Undamaged homologous molecules are provided by sister chromatids 
or paternal/maternal copies of chromosomes.

HRR is a DSB DNA repair process wherein damaged DNA is 
replaced by undamaged homologous molecules from sister 
chromatids or paternal/maternal copies of chromosomes.

BRCA2 is a human protein involved 
in DSB DNA break repair via HRR

RAD51 is a eukaryotic gene that 
encodes the RAD51 homolog gene.

Claim: BRCA2 promotes the joining of undamaged homologous repair 
molecules via RAD51 homolog 1 in humans.

~1.000.000.000 facts

Expert-level scientific inference & explanation



BRCA2 and RAD51 homolog 1 are both 
involved in HRR in humans.

The binding of BRCA2 and RAD51 homolog 1 catalyzes 
the joining of undamaged homologous molecules.

Claim: BRCA2 promotes the joining of undamaged homologous repair 
molecules via RAD51 homolog 1 in humans.

Q: How do models represent sentences and their entailment relations?
Q: In which cases will inferences fail?



Premises
…
5- Inhibiting PARP results in accumulation of SS breaks.
6- NHEJ does not use a template to repair DSB and can cause increased genomic instability.
7- PARP1 synthesis PAR which recruits repair proteins to sites of DNA damage
8- In the absence of functional HRR genes, DNA repair defaults to NHEJ.
9- PARP1 synthesises PAR.
10- PAR recruits repair proteins to damaged DNA site.
…
15- PALB2 is required for the localization of BRCA2 to sites of DNA damage
16- PALB2 encodes a major BRCA2 binding partner that controls its intranuclear localization and stability.
17- RAD51 is a eukaryotic gene that encodes the RAD51 homolog gene.
18- BRCA2 promotes the assembly of RAD51 homolog 1 onto SS DNA in HRR.
19- BRCA2 is a human gene that encodes the BRCA2 protein.
20- BRCA2 protein is a tumour suppressor involved in HRR.
21- HRR is the primary process for repairing DNA double strand breaks.
22- HRR repairs damage to DNA using information copied from a homologous undamaged molecule.
23- Undamaged homologous molecules are provided by sister chromatids or paternal/maternal copies of chromosomes.
...

Intermediate Steps
24. Loss of PALB2 leads to a deficiency in HRR, causing the cells to rely on other DNA repair mechanisms. 
(Combination of premises 8, 15, 16, 21, 22)
25. Inhibiting PARP in cells lacking PALB2 results in the accumulation of DNA damage due to the reliance on a singular 
repair mechanism, leading to synthetic lethality. (Combination of premises 5, 9, 10, 24)

Conclusion
Patients with loss of PALB2 may benefit from PARP1 inhibition due to synthetic lethality, causing cells to rely on a 
singular mechanism to repair cumulative damage to DNA. 

RAG
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The Neuro: Language Models (LMs) as the foundation for scaling-up 
language interpretation (content-based, flexible).

The Symbolic: LLMs alone do not deliver complex and controlled inference.

Epistemological foundations: 
• Building on >2000 years foundations on epistemology & formal reasoning.
• Precisely defining formal and material inference.
• Integrating epistemological priors as controls within LMs.
• Evaluating on real-world inference conditions.

The Neuro-symbolic approach

> 2000 years





Language understanding and inference implies:

- Representation of complex sentence structures.
- Interpretation of complex concepts.
- Interpretation of contextual differences.
- Step-wise, controlled inference.
…

To summarise



Methods for integrating the flexibility of LMs to the control of formal 
models (Neuro-symbolic NLP models).

The angle: less ‘task-oriented’. 

Zooming into the representation of well-defined linguistic objects 
(sentences and inference).

E.g.
- Sentences with complex structures.
- Sentences referring to conceptual representations 
(e.g. definitions, explanations)
- Interface between content and structure.

Today



Model AInput Output
Extrinsic 
Measures

Supporting annotated 
dataset for Task X

Assumptions: 
• Dataset is a proxy approximation for Task X.
• Dataset is roughly representative of the scope of Task X.

• including the distribution of the ling./inf. phenomena associated with Task X.
• Out-of-Distribution (OOD) generalisation is defined in terms of other datasets. 
• A characterisation of the ling./inf. phenomena associated with Task X are not at the centre.
• Aggregate extrinsic measures provide an absolute and comparative indicator of how Model A 

addresses Task X.

Task X

Prevalent Paradigm (Extrinsic Evaluation)

Overall nature of the empirical claims:
• Interventions behind Model A improves interpretation of Task X wrt to Datasets 1,2,3 ... 
• Interventions behind Model A improves interpretation of Task X as compared to Models B, C, D, …
• Without that intervention (ablated Model A’), ceteris paribus,  we decrease of performance wrt A.



Model A

Ling./Inf. Categories and Structures

Input Output
Extrinsic 
MeasuresSupporting annotated 

dataset for Task X

Task X

Assumptions: 
• Interpreting Task X subsumes addressing ling./inf. categories ⍺, β, γ. (common across other tasks).
• To address Task X it is desirable that the model induces a representation which reflects ⍺, β, γ, …
• A characterisation of the ling./inf. phenomena associated with Task X is at the centre.
• Dataset covers ⍺, β, γ, within a quantifiable distribution. 
• Aggregate intrinsic measures provide an absolute and comparative indicator of how Model A 

addresses ⍺, β, γ, …

Intrinsic 
Measures

Overall nature of the empirical claims:
• Interventions behind Model A improves interpretation of ⍺, β, γ as content-expressed in Datasets 1,2,3 ... 
• Interventions behind Model A improves  interpretation of ⍺, β, γ as compared to Models B, C, D, …
• Without that intervention (ablated Model A’), ceteris paribus,  we decrease of performance wrt ⍺, β, γ .

Representation/Interpretability-based Evaluation



• Promotes an evaluation perspective which is semantically granular.

• Allows a deeper understanding of the transferability of the results.
• E.g. Target properties can be different across languages.

• Allows the design of models which are better linguistically grounded.

• Provides an alternative empirical pathway to do NLP beyond an extrinsic 
evaluation dogma (‘milking the F1-score cow’).

• Formal grounding as an enabler of safety mechanisms. 
   (which types of inference are covered)

Value



LM

Linguistic Categories 
and Structures

Input Output

Formal intervention

Ling./Inf. Categories and Structures

Extrinsic 
Measures

Supporting annotated 
dataset for Task X

Task X

Intrinsic 
Measures



LLMs Formal
Neuro Symbolic

Premises
Facts

Background knowledge
Conclusion

computes an answer + explains an answer

- step-wise explicit inference
- verifiability
- logical correctness
- completeness
- control 

~

Abstractive/Inductive
Logical

Deductive
Mechanistic
Explanatory
Argumentative
Structural
Numerical
Causal

Equational
...

Select
Entail
Answer
…

Material (content-based) inference

Formal inference

Representation & Reasoning



Contrasting Formal vs Neural/Latent perspectives of semantics
Controlling Language Models (LMs)
Language Variational Autoencoders (VAEs)
Semantic Control via Conditional VAEs 
Building & Probing Language VAEs (LangSpace & LangVAE)
Improving Separability
Discretisation & Control
Syntactic & Structural Control
Trends

Outline for Today



Neural vs Formal Representations



Representing sentences



Formal perspectives on sentence representation: Syntax

NN
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PP
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‘Loss of BRCA2 may cause increased genomic instability.’

The syntactic perspective
Part-of-Speech, constituency, dependencies, ...

Words -> POS
Words -> Phrases
Phrases -> Syntactically correct sentence

POS: Allows for a robust categorical system
Syntax: Describes how diferente types of word connect
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Adding the set-theoretical/functional perspective (Montague semantics)

Montague Semantics

‘Loss of BRCA2 may cause increased genomic instability.’



NN
instabilitygenomic

increased

JJ

VBN

VB NP

NP

VP

instabilities

genomic instabilities

S

…

How do words, phrases functionally combine into a sentence?

compositionality



NN
instabilitygenomic

increased

JJ

VBN

VB NP

NP

VP

instabilities

genomic instabilities

Montague Semantics: Compositionality

S

…

compositionality

Lead to a formal meaning representation

Why formal?
- Well defined properties
- Computable expression



Davidsonian Semantics

Event semantics perspective:



Neo-Davidsonian Semantics

The Neo-Davidsonian semantics separates the action or verb from its 
participants and properties, using distinct predicates to describe each 
aspect of an event.



Abstract Meaning Representation (AMR)

(cause-01
  :ARG0 (loss-01
          :ARG1 (gene
                  :name (name :op1 "BRCA2")))
  :ARG1 (increase-01
          :ARG1 (instability-01
                  :mod (genomic)))
  :mod (possible-01))

‘Loss of BRCA2 may cause increased genomic instability.’



Semantic Role Labelling (Shallow semantics)

Predicate (V): "cause"
Agent (A0): "Loss of BRCA2"
Effect (A1): "increased genomic instability"

cause(Loss of BRCA2, increased genomic instability)

Agent Effect

Thematic (θ) roles

Argument Structure Theory (AST)



Formality spectrum

Formal spectrum

+ Expressive
+ Granular
+ Controlled
+ Well-defined properties
- More brittle

AMR

AST/SRL Davidsonian

More structure
Less structure
Broader categories

+Robust parsing
+ Flexible
- Approximative
- Control

Montague



Representing complex sentences



Representing complex sentences



Niklaus, Cetto, Freitas, Handschuh ACL (2019)

Complex Sentence Representation





Santos, Freitas, Handschuh, AAAI (2018, 2019)

• Essential attributes of a conceptualisation.
• Abundance of NL definitions in discourse.
• Definition semantic roles (DSR): Decomposing conceptual components.

Homologous recombination repair is a DNA repair process that 
includes the invasion of an undamaged DNA molecule by a damaged 
molecule of identical or very similar sequence.

DEFINIENDUM  DIFFERENTIA QUALITY SUPERTYPE DIFFERENTIA-EVENT

Getting the concepts right: representing NL definitions



Representing definitional sentences

Santos, Freitas, Handschuh, CogAlex (2016)

Q: Can these formal categories inform better conceptual representations?



Formal natural language inference



Natural Language Inference
E.g. EntailmentBank, each step shows distinct reasoning behaviour (i.e., substitution, 
conjunction, etc). 



Contrasting to neural models



S2: Genomic instability could increase as a result of BRCA2 loss.

BERT

S1 S2

FFNN

Sim. score

Scalability problem, pair-wise comparison

S1: Loss of BRCA2 may cause increased genomic instability.

Cross-encoder model for sentence similarity

S3: This is an unrelated sentence.



BERT

S1 S2

pooling

(Sa, Sp, Sn)

The SBERT Model

BERT

pooling

u v

softmax

(u , v, |u-v|)

Siamese/triplet network structure

classification 
objective function

cos-sim (u,v)

mse-loss

regression objective 
function

triplet objective 
function

Reymers & Gurevych (EMNLP, 2019)

(Schroff et al., 2015)

SNLI (Bowman et al., 2015) 
Multi-Genre NLI (Williams et al., 2018) 



Embeddings spaces

Underlying geometry

- Syntactic, semantic, compositional content, inference 
properties packaged as a vector

-  Distributed 

Model

Sentence embeddings

S2: Genomic instability could increase as a result of BRCA2 loss.

S1: Loss of BRCA2 may cause increased genomic instability.

S3: This is an unrelated sentence.

S1

S2

S3



Underlying 
geometry

- State space of latent semantic features

- Expressive latent semantics subspaces.
       (enabled by the multi-layer MHA, MLP, 
         normalisation/residual components, etc)

-       Not trivial to define a sentence representation

Model
… instability

Loss of BRCA2 may cause increased genomic ...

Fn

Figure credit : Lara-Benitez et al, 2020

Generative perspective



Approximative
High-dimensional vector space/geometrical
Similarity-based operations
Disambiguation ‘on-read’
Syntactic, semantic & content entanglement
Latent/Poorly interpretable ling. features

Exact 
Set-based/logical
Symbolic operations
Disambiguation ‘on-write’
Fully disentangled representation
Explicit ling. features

Neural Formal/Symbolic

Contrasting Properties (Representation)



Approximative inference
Content centered/Material inference
Entangled inference relations
Low inference control
Robust to incompleteness, variability
Short-distance inference relations
Scalable
Less interpretable

Exact inference
Syntax centered/Formal inference
Well-defined inference relations
High inference control
Requires completeness, brittle
Long-distance inference relations
Not-scalable
More interpretable

Neural Formal/Symbolic

Contrasting Properties (Inference)



Produce representations of language which allows for the 
constructive integration of both perspectives.

(best of both worlds)

Neuro-symbolic NLP (objectives)



Embeddings spaces

Underlying geometry

Semantically inconsistent space

Model



Embeddings spaces

Underlying geometry

Improving semantic consistency

+ separation
+ disentanglement

Model

SRL



Embeddings spaces

Underlying geometry

Improving semantic consistency

+ separation
+ disentanglement

Valentino et al, NAACL (2024)
Zhang et al, NAACL (2024)
Valentino et al, EACL (2024)
Zhang et al, EACL Findings (2024)
Carvalho et al, EACL Findings (2023)
Mercatali et al, NeurIPS (2022)
Mercatali & Freitas, EMNLP Findings (2021)Neural



Language disentanglement
Separating the different dimensions of a model’s latent space with specific
linguistic feature (descriptively and prescriptively).

Linguistic factors



Abstract conceptual factors

(more content-based)

Language disentanglement



Language disentanglement
Disentanglement: features and dimensions alignment (privileged). In facial images, for
example, eyes, nose, mouth, etc., can be disentangled and localised in latent space.

source: https://transformer-circuits.pub/2022/solu/index.html#section-3-2

In transformers, however, the token embeddings, residual streams, and attention vectors are non-
privileged, where more dimensions contribute to a feature.

Q: In sentence space, can sentence vectors with the same
feature have similar directions in a subspace?

“direction
determinatew
the features”

https://transformer-circuits.pub/2022/solu/index.html


Cone (as a semantic subspace)

Definition: In linear algebra, a cone, sometimes called a linear cone, is a subset of a
vector space that is closed under positive scalar multiplication. that is, C is a cone if 𝑥
∈ 𝐶 implies 𝑠𝑥 ∈ 𝐶 for every positive scalar.

Convex cone: A cone C is a convex cone if αx + βy belongs to C, for any positive scalars
α, β, and any x, y in C. A cone C is convex if and only if C + C⊆C.

source: from https://en.wikipedia.org/wiki/Convex_cone

Q: If x and y are sentence vectors, is there a convex cone
available where all αx + βy in this cone hold the same “feature”
of those sentence vectors?

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Convex_cone


Disentangled sentence semantics
Sentence semantics: From argument structure theory (AST), the sentence semantics is modelled by
the relation between pred-arg structure, the associated semantic roles and distributional word content.

We simplify the sentence semantics as a composition of role-content relations: 

[1] Ray S Jackendoff. 1992. Semantic structures, volume 18. MIT press.
[2] Beth Levin. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press.
[3] Malka Rappaport Hovav and Beth Levin. 2008. The english dative alternation: The case for verb sensitivityl. Journal of linguistics, 44(1):129–167.

Q: Can we define separated convex role-content cones within the
sentence space?



Sentence semantic disentanglement

If the sentence semantics can be disentangled under ,  sem(s) can be decomposed into:

where each set represents a specific role-content cluster resolved to a hypersolid over the latent space.

Given a set of N sentences with same t(c,r) but different sem(s), the t(c,r) can be formed: 

Therefore, we can evaluate the semantic disentanglement (i.e., natural clustering property [1]) by evaluating
the density (recall) within same t(c,r) and separability (accuracy) between different t(c,r) via downstream
classifier or linear interpolation [1].

[1] Yoshua Bengio. 2013. Deep learning of representations: Looking forward. In International conference on statistical language and speech processing, pages 1–37. Springer.



[1] Zhang, Y., Carvalho, D. S., Pratt-Hartmann, I., & Freitas, A. (2022). Quasi-symbolic explanatory nli via disentanglement: A geometrical examination. arXiv preprint arXiv:2210.06230.

Role-content cone

Problem: Different cones (i.e., role-contents) are still overlapped.

Observation: The addition operation αx + βy can hold the sentence
semantic feature: role-content. We randomly sample the sentences with
the same role-content and calculate the ratio of ADDed sentences with
the same role-content (dark blue bar).



Separability

Separating semantic features into different regions (clusters) of a model’s
latent space:



Can we offer geometric guarantees regarding the LM inference process?

Separability



Controlling LMs



[style: active] 
The whole team helped pushing the rock

[style: passive] 
The rock was pushed with help from the whole team

Style Transfer

An NLI task that consists in the separation between style-content.



○

Style Transfer

Style transfer methods provide a foundation for improving control over generative
models:

○ Feature-oriented losses
○ Disentanglement evaluation

However, further concepts are needed for control beyond style-content
separation:

○ Generative factors
○ Feature localisation
○ Input augmentation



Generative Factors

Independent underlying variables affecting the generation in a generative model.

This is manifested as a high value of:

where Zi is a single dimension in the model’s latent space representation Z, Yj (a
generative factor) is a feature of the model’s outputs Y, and V is a small subset of all
possible values of Yj.

Ideally, they can be mapped to interpretable linguistic features.



Factors Yj are often not explicit in the model’s outputs (e.g., tense, 
polarity of a sentence).

They can be observed through abstraction of the explicit feature 
space.

○ An intended outcome of the training process.
○ However often highly entangled (distributional prop.)

Generative Factors



Generative Factors: Extraction

Extraction of such factors can be automated through specialised classifiers. 



Generative Factors: Examples

Using linguistically grounded features:

• Argument Structure Theory (AST): categorising the semantic functions of 
arguments in relation to the verb (e.g. agent, patient, theme, instrument).

• Definition Semantic Roles (DSR): grouping the roles according to their 
contribution to either: 

• meaning (e.g., quality, location) 
• structure (e.g., main terms, modifiers)



● Hu et al., 2017: sentiment, tense.

● Chen et. al., 2019: constituency parse, POS, paraphrase.

● Mercatali, Freitas., 2021: tense, subj-num, person-num, obj-num, gender, verb-
obj, negation, verb-style, sent-type.

● Carvalho et. al., 2023: supertype, quality, location, modifier, statement, 
accessory, event.

Generative Factors: Examples

http://proceedings.mlr.press/v70/hu17e.html
https://aclanthology.org/N19-1254/
https://aclanthology.org/2021.findings-emnlp.301/
https://aclanthology.org/2023.findings-eacl.101/


Latent space (LS) manipulation

We can manipulate a latent space during training or fine-tuning, 
conforming it to a set of properties. 

• Disentanglement of generative factors.

• Localisation of features for given factors.

• Linguistic consistency for linear operations.



LS manipulation: Bias induction

Inducing the necessary biases to the model can be typically
achieved by:

● Augmenting the inputs with relevant features.

● Supervising the training / fine-tuning with the relevant features.

● Including generative factor losses to guide the training.

And their combination.



LS manipulation: Generation control

A disentangled, localized or linearly consistent latent space enables
granular control over sentence generation. 



Generation control: Examples

Hu et al., 2017: tense

http://proceedings.mlr.press/v70/hu17e.html


Chen et. al., 2019: (syntax-semantics)

Generation control: Examples

https://aclanthology.org/N19-1254/


Mercatali, Freitas., 2021: Syntactic factors

Generation control: Examples

https://aclanthology.org/2021.findings-emnlp.301/


Carvalho et. al., 2023: supertype, quality (vector arithmetics)

Generation control: Examples

https://aclanthology.org/2023.findings-eacl.101/


Linguistically-aware loss functions

Once linguistically grounded factors can be extracted from inputs and outputs, 
their expected labels can be used to calculate additional losses for training / 
fine tuning.



Linguistically-aware loss functions: Examples

Hu et al., 2017: tense
○ Discriminator probe

Chen et. al., 2019: word position, STS
○ Paraphrase Reconstruction Loss
○ Discriminative Paraphrase Loss (embeddings)
○ Word Position Loss

Carvalho et. al., 2023: Definition Semantic Roles (DSR)
○ DSR reconstruction loss (NLL)

http://proceedings.mlr.press/v70/hu17e.html
https://aclanthology.org/N19-1254/
https://aclanthology.org/2023.findings-eacl.101/


Language Variational Autoencoders (VAEs) 



What is a latent variable model?

Generative modelling task:

Assume:
● data samples 𝑥1,𝑥2,…,𝑥𝑛
● from a distribution of interest Q(𝑥)
● unknown density

We’re interested in using these samples to learn a probabilistic model approximating
Q.  In particular, we want efficient generation of new samples (approximately) 
distributed from Q.

Latent variable models: models the transformation from latent variable distribution
(such as std Gaussian) to Q. They include variational autoencoders (VAE), generative
adversarial networks (GAN), normalizing flow, diffusion, flow matching, etc.



Why we use latent variable model?

Latent variable model: provides a low-dimensional & smooth latent space (manifolds), 
which allow us to “interpret” and “control” data generation over complex unknown space.

“What I cannot create, I do not understand.” - Richard P. Feynman



Overview

1. Variational 
AutoEncoder(VAE)

1. Latent variable model: p(x, z)
2. Variational inference: approximating true posterior
3. Evidence lower bound: Jensen’s inequality
4. VAE architecture: fixed std Gaussian prior and posterior
5. Complex fixed prior and problem: vMF distribution and hole
6. Trainable prior: conditional VAE
7. Pytorch library: pythae

2. Language VAE
1. Transformer-based VAEs’ architecture: Optimus
2. Objective function: negation of ELBO with KL cyclical and threshold tricks
3. Pytorch library: LangVAE

3. Latent semantic 
control methods

1. semantic geometry with normalizing flow: 
“Learning Disentangled Semantic Space of Explanations via Invertible Neural Networks”

1. syntax with graph neural network: 
“graph-induced Semantic-Syntax Space in Transformer-based Variational AutoEncoder”

1. discretization with vector quantization:
“Improving Semantic Control in Discrete Latent Spaces with Transformer Quantized Variational Autoencoders”

1. label with conditional VAE: 
“Learning disentangled representations for natural language definitions”
“Toward Controllable Natural Language Inference through Lexical Inference Types”
“LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent Sentence Spaces”

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=VyfR-JgAAAAJ&citation_for_view=VyfR-JgAAAAJ:zYLM7Y9cAGgC


VAE: 1. Latent variable model

Latent variable model: models the joint distribution p(x, z) = p(x|z)p(z). For 
training stage, we can only access to x. Therefore, we marginalise out the
latent variables z, the target distribution:

However, the integration is intractable!

color=brown, 
size=onlyFace, 
glasses=Yes

: prior distribution of latent variables. 

: represents the parameter we want to obtain.           

: likelihood which represents the transformation from latent
variables to observation. 



VAE: 2. Variational inference
Variational Inference: To avoid integrating over the whole latent space, a natural 
question would be “Can we infer any information about z after observing a sample?” -
true posterior:

In VAEs, the idea from “(amortised) variational inference” is to approximate the true
posterior                  with a network with parameter , denoted by (approximate
posterior). We can use KL: 

We want to (1) maximize the probability of generating real data and (2) also
minimize the difference between the true and estimated/aggregate/ approximate
posteriors.

(1) (2)



VAE: 3. Evidence lower bound (ELBO)
Evidence lower bound(ELBO): the right part is also named Evidence lower bound (ELBO): the lower bound of
log likelihood of observation x.  



VAE: 4. Gaussian prior and posterior
Architecture: When prior is a “fixed” std Gaussian distribution, the VAE training and inference can be
visualised as:

reparameterization trick: remove stochastic sampling process from deterministic backward propagation.

Calculate KL between approximated
posterior and std Gaussian (dim=1 is
the latent dimension, 0: batch size):

compress reconstruct



*The encoder output logvar rather than var^2 because the
output of neural network might be < 0. 

VAE: 4. Gaussian prior and posterior



VAE: 5. Problems with a complex fixed prior

Fixed prior: In addition to Gaussian distribution, there are more
options to choose different prior and posterior distributions, such
as “von Mises-Fisher” (i.e., hypersphere), etc. or more complex
structure, such as hyperbolic [1], and hierarchical spaces.

Problem of fixed priors: due to the mismatch between prior and
posterior during inference, the sampling from the area of prior,
where the aggregated posterior assigns low probability while the
prior assigns (relatively) high probability. This might lead to low
quality generation. We refer it as “hole” problem [2].

“hole”

Solution: To remedy this problem, we can use a trainable prior.

source from: https://jmtomczak.github.io/blog/7/7_priors.html#Introduction

[1] Mathieu, E., Le Lan, C., Maddison, C. J., Tomioka, R., & Teh, Y. W. (2019). Continuous hierarchical
representations with poincaré variational auto-encoders. Advances in neural information processing systems, 32.

[2] Rezende, D. J., & Viola, F. (2018). Taming vaes. arXiv preprint arXiv:1810.00597.

https://jmtomczak.github.io/blog/7/7_priors.html


VAE: 6. Trainable prior
Trainable Prior: Since the fixed prior might be too rigid, it can cause the “hole” problem, we can
design a learnable prior to induce the posterior and the prior try to match each other during training,
such as Gaussian Mixture Prior, VAMP Prior, FlowPrior[1], conditional VAE (CVAE), etc.

[1]Xiaoan Ding and Kevin Gimpel. 2021. FlowPrior: Learning Expressive Priors for Latent Variable Sentence Models. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 3242–3258, Online. Association for Computational Linguistics.

[2]Tomczak, J. M. (2022). Deep Generative Modeling. Springer Nature https://jmtomczak.github.io/blog/7/7_priors.html#Introduction

contours represent prior where left: 
Gaussian, right: Gaussian mixture.

source from: https://jmtomczak.github.io/blog/7/7_priors.html#Introduction

https://aclanthology.org/2021.naacl-main.259
https://jmtomczak.github.io/blog/7/7_priors.html
https://jmtomczak.github.io/blog/7/7_priors.html


Language VAE: 1. Transformer-based VAEs
Optimus[1]: BERT-GPT2 architecture with Gaussian prior. The latent space is injected into the decoder with
memory injection setup (ii), which operates over the low-rank attention weights (i.e, Key and Value) directly. This
low-rank injection can avoid redundant information compared to (i) and (iii) [2].

[1] Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. 2020. Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space. In Proceedings of the 2020 
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4678–4699, Online. Association for Computational Linguistics.

[2] Hu, J., Yi, X., Li, W., Sun, M., & Xie, X. (2022). Fuse it more deeply! a variational transformer with layer-wise latent variable inference for text generation. arXiv preprint arXiv:2207.06130.

https://aclanthology.org/2020.emnlp-main.378


Objective function: the negation of ELBO, to avoid KL vanishing (posterior collapse). Two tricks:

1. Cyclical schedule[1]: gradually and cyclically increase from 0 to 1.  

2. KL threshold scheme[2]: for each dimension, choose the max between threshold and KL.  

Language VAE: 2. Objective function

[1] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. 2019. Cyclical annealing schedule: A simple approach to mitigating KL vanishing. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 240–250, Minneapolis, Minnesota. Association for Computational Linguistics.

[2] Bohan Li, Junxian He, Graham Neubig, Taylor BergKirkpatrick, and Yiming Yang. 2019. A surprisingly effective fix for deep latent variable modeling of text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3603– 3614, Hong Kong, China. Association for Computational Linguistics.

*trade-off between reconstruction and compression

* cyclical schedule: beta increasing



Language VAE: 3. Pytorch library
LangVAE: our demo can easily integrate different pretrained language models into VAE architecture.

Pretrained checkpoints: 

https://huggingface.co/neuro-symbolic-ai

Train:

Only support Gaussian prior now. 

https://github.com/neuro-symbolic-ai/LangVAE

Evaluation: 

https://github.com/neuro-symbolic-ai/LangSpace

1. latent traversal; 
2. interpolation; 
3. arithmetic; 
4. t-sne/UMAP/PCA;
5. disentanglement metrics.

https://huggingface.co/neuro-symbolic-ai
https://github.com/neuro-symbolic-ai/LangVAE
https://github.com/neuro-symbolic-ai/LangSpace


Language VAE: 3. Train LangVAE
Train on the Language Modelling task: larger decoder (i.e., fixed LLaMA 1) leads to better performance[1]. 

[1] Zhang, Y., Carvalho, D. S., Pratt-Hartmann, I., & Freitas, A. (2023). LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent Sentence Spaces. arXiv preprint arXiv:2312.13208.



Language VAE: 3. Evaluate LangVAE
Evaluation: three semantic control operators to probe latent space geometry:

1. Latent Traversal: stochastic random walk over Gaussian space, such as sampling each dimension, Brownian
motion, Ornstein-Uhlenbeck. 

2. Linear Interpolation: generate a sequence of sentences following a spatial trajectory from source to target via 
latent arithmetics:                                                               with t increased from 0 to 1 by a step size of 0.1 where and
represent latent vectors of source and target sentences, respectively. 

3. Latent Arithmetic: Similar to word2vec, king-man+woman=queen, adding or subtracting latent sentence vectors.



Language VAE: 3. Evaluate LangVAE
4. Visualisation: visualising semantic distribution/separation via t-SNE, UMAP, and PCA.

5. Disentanglement metrics: There are metrics widely applied in the Image domain to evaluate the
disentanglement of latent spaces, including: 1. mutual information gap (MIG), 2. modularity, 3.
disentanglement score, 4. completeness score, 5. informativeness score, etc.

E.g., Mutual Information Gap(MIG)



Normalising flow: 1. Change of variables

Change of variables formula: transformation from one distribution to another distribution.

: a simple distribution

: a complex distribution

: a neural network

: Jacobian determinant.    

Normalise the probability density.



Normalising flow: 2. Objective function

Objective function: maximise the log-likelihood.

source: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Normalising flow: a sequence of changes of variables.



Normalising flow: 3. Architecture
Architecture: each f is a neural network, such as affine coupling layer, which should
satisfy two conditions: 

1. get the inverse:

2. easy to compute Jacobian:

the inputs of t and s do not change in both direction, 
therefore, they can be any kind of neural network.

s and t can be arbitrary neural networks.



Normalising flow: Pytorch library
Pytorch framework for normalising flow: 

FrEIA: https://vislearn.github.io/FrEIA/_build/html/tutorial/quickstart.html

normflows: https://github.com/VincentStimper/normalizing-flows

https://vislearn.github.io/FrEIA/_build/html/tutorial/quickstart.html
https://github.com/VincentStimper/normalizing-flows


Semantic Control via Conditional VAEs



Conditional VAEs
Recall: objective function of VAE (ELBO): 

From introduction to CVAE: https://beckham.nz/2023/04/27/conditional-vaes.html

Two types of conditions: (1) z and y (i.e., label) are independent; (2) z and y are dependent.

https://beckham.nz/2023/04/27/conditional-vaes.html


CVAE: when y and z are independent

Independency: when y and z are independent, the label is injected into encoder and decoder during
training. The prior is a fixed distribution.



CVAE: when y and z are dependent

Dependency: when y and z are dependent, the prior can be a trainable encoder. The label is injected
into encoder, decoder, and a “trainable” prior encoder.



Carvalho, D. S., Mercatali, G., Zhang, Y., & Freitas, A. Learning disentangled representations for natural language
definitions. EACL Findings (2023).

Background: investigating the disentanglement of semantic role label via CVAE when y and z are 
independent, denoted by C.

Observation: CVAE can improve semantic role disentanglement.



Zhang, Y., Carvalho, D. S., Pratt-Hartmann, I., & Freitas, A. 
LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent Sentence Spaces. 

arXiv:2312.13208 (2023).

Background: investigating CVAE where the condition is word embedding, with the help of normalizing flow, 
we can now generate definition text condition on word embedding in definition modelling task[1].

Normalising flows can plug-in into pretrained VAEs to conditionally control text generation.

[1] Timothee Mickus, Kees Van Deemter, Mathieu Constant, and Denis Paperno. 2022. Semeval-2022 task 1: CODWOE – comparing dictionaries and word embeddings. In Proceedings of the 
16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1–14, Seattle, United States. Association for Computational Linguistics.



Zhang, Y., Carvalho, D. S., Pratt-Hartmann, I., & Freitas, A. 
Towards controllable natural language inference through lexical inference types. 

under review (2024).

Motivation & Question: Can natural language inference process be controlled via
labels?

Target: we focus on syllogistic-style deductive
inference (2 premises, 1 conclusion) to explore
the controllability of explanatory NLI.

Contribution:
(1) Framing the expl. NLI model as a latent

variable model.

(2) Ling./inf. priors can help model training,
inference, and delivering inference control.

[1] Dalvi, B., Jansen, P., Tafjord, O., Xie, Z., Smith, H., Pipatanangkura, L., & Clark, P. (2021). Explaining answers with entailment trees. arXiv preprint arXiv:2104.08661.



Methodology

Annotation: For each inference pair in
EntailmentBank, we annotate it via Abstract
Meaning Representation (AMR) graph. The
total number of annotation is around 5000.



ARG-SUB COND-FRAME



Methodology
Latent variable NLI model: (1) frame the NLI model, such as T5, as a latent variable model. For the conditional
case, the label and z are dependent.



Methodology
Latent variable NLI model: (1) frame the NLI model, such as T5, as a latent variable model. 

As implemented in the architecture.



Empirical analysis
Can inf. types control inference behaviour? For encoder input, given premises, changing the [type].

Inf. type can control the generation of conclusion, 
indicating the inference behaviour is encoded in the label embedding. 



Empirical analysis

Can annotation help model training and inference?

1.The inference type as the prefix for the premises at the Encoder
(Encoder Prefix):

the inference type is [type] </s> p1 </s> p2

2.The inference type as the prefix for the conclusion in the
Decoder (Decoder Prefix):

</s> the inference type is [type]. con

3.The inference type at the end of the conclusion in the Decoder
(Decoder End):

</s> con. the inference type is [type]

The annotations can support model training.



Building & Probing Language VAEs 
(LangSpace & LangVAE)



Pytorch library

Pythae: https://github.com/clementchadebec/benchmark_VAE
Deep Generative Modelling: https://github.com/jmtomczak/intro_dgm

https://github.com/clementchadebec/benchmark_VAE
https://github.com/jmtomczak/intro_dgm


Language VAE: Pytorch library
LangVAE: our demo can easily integrate different pretrained language models into VAE architecture.

Pretrained checkpoints: 

https://huggingface.co/neuro-symbolic-ai

Train:

Only support Gaussian prior now. 

https://github.com/neuro-symbolic-ai/LangVAE

Evaluation: 

https://github.com/neuro-symbolic-ai/LangSpace

1. latent traversal; 
2. interpolation; 
3. arithmetic; 
4. t-sne/UMAP/PCA;
5. disentanglement metrics.

https://huggingface.co/neuro-symbolic-ai
https://github.com/neuro-symbolic-ai/LangVAE
https://github.com/neuro-symbolic-ai/LangSpace


LangVAE: Easy to train Language VAEs

LangVAE is a python library for agile experimentation with language VAEs.

Featuring:

Easy integration of encoder and decoder models available from HuggingFace.

Tokenisation facility for any model combination.

Modular architecture, facilitating customisation.

Easy upload of trained models to HuggingFace.



Basic training script: BERT-GPT2

dataset = [sent for sent in EntailmentBankDataSet()
if (sent.annotations["type"] == "answer" or

sent.annotations["type"].startswith("context"))]
eval_size = int(0.1 * len(dataset))

decoder = SentenceDecoder("gpt2", LATENT_SIZE, MAX_SENT_LEN)
encoder = SentenceEncoder("bert-base-cased", LATENT_SIZE, decoder.tokenizer)
train_dataset = TokenizedDataSet(dataset[:-eval_size], decoder.tokenizer, decoder.max_len)
eval_dataset = TokenizedDataSet(dataset[-eval_size:], decoder.tokenizer, decoder.max_len)

model_config = VAEConfig(…)
model = LangVAE(model_config, encoder, decoder)

training_config = CyclicalScheduleKLThresholdTrainerConfig(…)
pipeline = LanguageTrainingPipeline(training_config=training_config, model=model)
pipeline(train_data=train_dataset, eval_data=eval_dataset)

LangVAE: Easy to train Language VAEs



SentenceDecoder: Encapsulates decoder model and latent injection strategies
(memory, embeddings).

Defines the tokenizer model for inputs

decoder = SentenceDecoder(model_path, latent_size, max_sent_len)

• model_path: the name/path of the HuggingFace model to be used. It will be
automatically loaded using the transformers library (e.g., “gpt2”).

• latent_size: dimension of the VAE latent space (e.g., 64).

• max_sent_len: maximum sentence length in tokens.

LangVAE: Easy to train Language VAEs



SentenceEncoder: Encapsulates encoder model and converts input tokens 
from the decoder tokenizer, so only the decoder tokens are needed. 

encoder = SentenceEncoder(model_path, latent_size, decoder.tokenizer)

• model_path: same as SentenceDecoder, but with an encoder model 
(e.g., “bert-base-cased”).

• latent_size: same as SentenceDecoder

• decoder.tokenizer: tokenizer model from a SentenceDecoder instance.

LangVAE: Easy to train Language VAEs



from saf_datasets import WordNetFilteredDataSet

dataset = WordNetFilteredDataSet()
decoder = SentenceDecoder("gpt2", 32, 64)
tok_dataset = TokenizedDataSet(dataset, decoder.tokenizer, decoder.max_len)

Accepts two formats:

● Simple list of strings.
● Instance of SentenceDataset from the saf_datasets library.

LangVAE: Easy to train Language VAEs

TokenizedDatasets: tokenizes and batches input sentences, using an interface derived from pytorch datasets. 

Provides one-hot encoded sentence tensors L×V, where L is the sentence length and V is the decoder vocabulary size.

https://github.com/neuro-symbolic-ai/saf_datasets.git
https://github.com/neuro-symbolic-ai/saf_datasets.git


Configuration and pipeline setup

model_config = VAEConfig(
input_dim=(dataset[0]["data"].shape[-2], dataset[0]["data"].shape[-1]),
latent_dim=32

)

model = LangVAE(model_config, encoder, decoder)

LangVAE: Easy to train Language VAEs



training_config = CyclicalScheduleKLThresholdTrainerConfig(
output_dir='def_expl_vae',
num_epochs=5,
learning_rate=1e-4,
per_device_train_batch_size=50,
per_device_eval_batch_size=50,
steps_saving=1,
optimizer_cls="AdamW",
scheduler_cls="ReduceLROnPlateau",
scheduler_params={"patience": 5, "factor": 0.5},
max_beta=1.0,
n_cycles=40,
target_kl=2.0

)

pipeline = LanguageTrainingPipeline(training_config=training_config, model=model)

Configuration and pipeline setup

LangVAE: Easy to train Language VAEs



Starting the training process

pipeline(
train_data=train_dataset,
eval_data=eval_dataset

)

LangVAE: Easy to train Language VAEs



Examples:

https://colab.research.google.com/drive/1CCFvPWsQU2VX41guHGT2-uFgHogAejDv

Code:

https://github.com/neuro-symbolic-ai/LangVAE

LangVAE: Easy to train Language VAEs

https://colab.research.google.com/drive/1CCFvPWsQU2VX41guHGT2-uFgHogAejDv
https://github.com/neuro-symbolic-ai/LangVAE


LangSpace is a python library for quick testing and probing of language VAEs.

It features:

• A collection of probing methods, adapted for language VAE models.

• A modular architecture, for implementation of flexible and reusable probes.

• Extensible reporting methods.

LangSpace: Easy to probe Language VAEs



Loading models

from langvae import LangVAE

model = LangVAE.load_from_hf_hub(models.OPTIMUS_ENTAILMENTBANK, allow_pickle=True)

LangSpace: Easy to probe Language VAEs



Loading datasets

from saf_datasets import EntailmentBankDataSet

eb_dataset = [sent for sent in EntailmentBankDataSet.from_resource("pos+lemma+ctag+dep+srl#noproof")
if (sent.annotations["type"] == "answer" or sent.annotations["type"].startswith("context"))]

LangSpace: Easy to probe Language VAEs



Quantitative probes: Interpolation

from langspace.probe import InterpolationProbe
from langspace.metrics.interpolation import InterpolationMetric as InterpMetric

eval_metrics = [InterpMetric.QUALITY, InterpMetric.SMOOTHNESS]
interp_report = InterpolationProbe(model, dataset, eval=eval_metrics).report()
print(interp_report)
interp_report.to_csv("interpolation.csv")

LangSpace: Easy to probe Language VAEs



Quantitative probes: Interpolation

source target distance generate

humans require 
freshwater for survival

animals require food to 
survive 1.000

humans require water for survival
…
animals require food for survival
…
animals require food to survive

the sun is in the 
northern hemisphere

food is a source of 
energy for animals / 
plants

0.380

the sun is in in solar hemisphere
…
the sun is a source energy for called 
plants
…
food is a source of energy for animals / 
plants

LangSpace: Easy to probe Language VAEs



Quantitative probes: Disentanglement metrics

from langspace.probe import DisentanglementProbe

gen_factors = {
"direction": ["ARGM-DIR"],
"cause": ["ARGM-CAU"],
"purpose": ["ARGM-PRP","ARGM-PNC", "ARGM-GOL"],
"more": ["ARGM-EXT"],
"location": ["ARGM-LOC"],
…

}

disentang_probe = DisentanglementProbe(model, dataset, sample_size=1000,
metrics=["z-diff", "z-min-var", "Disentanglement", "Modularity"], gen_factors=gen_factors)
disentang_report = disentang_probe.report()
print(interp_report)
interp_report.to_csv(”disentanglement.csv")

LangSpace: Easy to probe Language VAEs



Quantitative probes: Disentanglement metrics

z-diff z-min-var MIG Completeness Informativene
ss

0.05 (±0.00) 0.25 (±0.00) 0.02 (±0.02) 1.00 (±0.00) 0.58 (±0.29)

LangSpace: Easy to probe Language VAEs



Qualitative probes: Traversal

from langspace.probe import TraversalProbe

trav_report = TraversalProbe(model, dataset, sample_size=10, dims=list(range(32))).report()
print(trav_report)
trav_report.to_csv("traversal.csv")

LangSpace: Easy to probe Language VAEs



Qualitative probes: Traversal

seeds dim distance generate
Earth revolves 
around the sun. 0 0.079735 light revolves 

around the sun.
Earth revolves 
around the sun. 0 0.249271 light revolves 

around the sun.
Earth revolves 
around the sun. 0 0.457066 light revolves 

around the sun.
... ... ... ...
leo is a kind of 
constellation 31 1.574725 leo is a kind of 

constellation
leo is a kind of 
constellation 31 3.739711 smo is a kind of 

constellation
leo is a kind of 
constellation 31 3.886802 chloro is a kind 

of cell

LangSpace: Easy to probe Language VAEs



Qualitative probes: Vector arithmetic
from langspace.probe import ArithmeticProbe
from langspace.ops.arithmetic import ArithmeticOps

arith_report = ArithmeticProbe(model, dataset, ops=list(ArithmeticOps)).report()
print(arith_report)
arith_report.to_csv("arithm.csv")

LangSpace: Easy to probe Language VAEs



Qualitative probes: Vector arithmetic
source target op generate

animals require food 
for survival

animals require 
warmth for survival sum animals require food for survival

water vapor is 
invisible the water is warm sum the water is invisible

animals require food 
for survival

animals require 
warmth for survival sub cal 5 chain carbohydrate makes 

a kind of food

water vapor is 
invisible the water is warm sub igneous is formed chemically in 

crystallizing

animals require food 
for survival

animals require 
warmth for survival avg animals require food for survival

water vapor is 
invisible the water is warm avg the water is invisible

LangSpace: Easy to probe Language VAEs



Qualitative probes: Cluster visualisation
viz_list = [[" ".join([tok.surface for tok in sent.tokens]),

" ".join([tok.annotations["srl_0"] for tok in sent.tokens])]
for sent in eb_dataset]

target_role = ['ARG0 : animal', 'ARG0 : water', 'ARG0 : plant', 'ARG0 : something']
target_viz_list = ClusterVisualizationProbe.role_content_viz(viz_list, target_role, sample_size=1000, TopK=5)
cluster_viz_report = ClusterVisualizationProbe(model, target_viz_list, sample_size=sample_size, 
methods=[CvM.TSNE]).report()

LangSpace: Easy to probe Language VAEs



Qualitative probes: Cluster visualisation

LangSpace: Easy to probe Language VAEs



Examples:

https://colab.research.google.com/drive/18Jath7q3_hn2uWyait9p3hOperphSo4S

Code: https://github.com/neuro-symbolic-ai/LangSpace

LangSpace: Easy to probe Language VAEs

https://colab.research.google.com/drive/18Jath7q3_hn2uWyait9p3hOperphSo4S
https://github.com/neuro-symbolic-ai/LangSpace


Improving 
separability



Instead: General semantic control and improve the localisation of latent sentence spaces, which can
shorten the gap between deep latent semantics and formal linguistic representations.

Zhang, Y., Carvalho, D. S., Freitas, A. Learning disentangled semantic spaces of
explanations via invertible neural networks. ACL 2024.

Contributions:

1. New notions on sentence semantic disentanglement from 
the perspective of “argument structure theory (AST)”.

2. Flow-based INN into AutoEncoder to control sentence 
generation.

3. Supervised approach to flow-based INN to learn a higher 
separation and disentanglement of semantic features. 

4. Geometrical data augmentation.



Overview: Most previous work have concentrated on disentangling “task-specific” generative factors, such as 
sentiment, within the context of style transfer. 

Instead: general semantic control and improve the localisation of latent sentence spaces, which can shorten
the gap between deep latent semantics and formal linguistic representations.

Zhang, Y., Carvalho, D. S., Freitas, A. Learning disentangled semantic spaces of
explanations via invertible neural networks. ACL 2024.



Methodology

Unsupervised: Maximize the exact log-likelihood:

Supervised: for each role-content cluster, given the center
embedding and a variance < 1, the points around each
center will be more densely distributed.

Overview: We first encode each sentence with pretrained AutoEncoder. Then, train the flow-based
INN to learn a latent space with better semantic disentanglement (i.e., role-content separation).



Methodology
Data augmentation: Usinng the arithmetic and traversal operators to support data 
augmentation for each role-content cluster, described as follows:

(1) given two sentence embeddings with same role-
content, calculate their average:

(2) re-sample each dimension of resulting vector 
(traversing its neighbours).

(3) decode it and keep the sentence holding the same
role-content.



Empirical analysis
Visualisation: evaluating semantic separability via t-SNE and PCA visualisers.

Supervised (right) leads to better semantic separation than Optimus(left) and un-supervision (middle). 

(Supervised)(Optimus) (Unsupervised)



Empirical analysis
Interpolation localisation: Evaluate the disentanglement via linear interpolation. 
Given two sentences with same semantic feature, a disentangled space should hold
the same feature during interpolation.

Observation: Supervised INN outperforms both in quantitative and qualitative evaluations.



Empirical analysis



Empirical analysis
Downstream classifiers: evaluate the role-content separation via non-parametric classifier: K-
neighbours (KNN) and parametric classifiers: Naive Bayes (NB) and Support Vector Machine (SVM). 

Observation: 
(1) supervised (C) outperforms both unsupervised(U) and Optimus(O). 
(2) (U) outperforms (O) in NB and SVM (encoder + flow can improve the 
representation capabilities of approximated posterior).



Discretised spaces 
and control



Discretisation: 1. Vector Quantisation
Vector quantisation(VQ): vector quantisation aims to maps k-dimensional input vectors X in the
vector space Rk into a finite set of vectors Y = {yi: i = 1, 2, ..., N}.  Each vector yi is called a code vector
and the set of all the code vectors is called a codebook.

To select yi from codebook to represent xi, we can use L2 distance (like k-mean).

source:  https://www.mqasem.net/vectorquantization/vq.html

voronoi region: https://en.wikipedia.org/wiki/Voronoi_diagram

Codebook initialisation: it can be randomly initialised from a 
distribution (Normal, uniform). More initialisations:
https://www.mqasem.net/vectorquantization/vq.html

Measurement the performance of VQ: using mean square error (MSE).

https://www.mqasem.net/vectorquantization/vq.html
https://en.wikipedia.org/wiki/Voronoi_diagram
https://www.mqasem.net/vectorquantization/vq.html


Discretisation: 2. VQ-VAE
VQ-VAE: it [1] first encode a text into token embeddings. Then, selecting the nearest codebook vector 
as the input of decoder. 

[1] Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation learning. Advances in neural information processing systems, 30.



Zhang, Y., Carvalho, D. S., Valentino, M., Pratt-Hartmann, I., & Freitas, A. Improving Semantic
Control in Discrete Latent Spaces with Transformer Quantized Variational Autoencoders. 

EACL Findings 2024.

Language modelling & Inference tasks:

Data: 
• Explanations and mathematical

expressions.

Evaluation: 
• BLEU for math modelling and inference

with four OOD testsets. 
• BLEU, BLEURT, Cosine, Loss, PPL for 

explanations. 

Overview: integrating T5 with vector quantisation, named T5VQVAE, to alleviate information bottleneck
of posterior for enhancing semantic control.

T5VQVAE outperforms Optimus on both tasks.



Empirical analysis
Geometrical evaluation: evaluate controllability of latent space via Traversal, 

arithmetic, and interpolation.

Traversal: given an input, re-sampling each dimension. Arithmetic:



Empirical analysis
Interpolation: interpolating over discrete space (i.e., codebook). 

For each token, calculate the weighted minimal intermediate token between its 
preceding token and the target token.

Observation: T5VQVAE leads to smoother interpolation path.

Interpolation smoothness: calculating the ratio between ideal semantic
distance (i.e., aligned distance between source and target) and actual
distance (i.e., sum of aligned semantic distances between each pair of
adjacent sentences in the path).

: sentence semantic distance

: sentence feature alignment



Related work



Related work



Syntactic & structural controls



Graph Neural Networks
Graph neural network: learns a function of signals/features on a graph 𝐺=(𝑉,𝐸) which
takes as input: (1) node embedding (i.e., V) and (2) adjacency matrix (i.e., E).

source: https://tkipf.github.io/graph-convolutional-networks/

E.g., given a GNN with 𝐿 layers, the l-th layer can then be written as:

: initial node embeddings.

: adjacency matrix.

Distinct models differ only in how 𝑓(⋅,⋅) is chosen and
parameterised.

https://tkipf.github.io/graph-convolutional-networks/


Graph Neural Networks
Graph Convolutional Network:

Two limitations:
1. Multiplication with 𝐴 means that, for every node, we sum up all the feature vectors of all neighboring nodes but not

the node itself. We can "fix" this by enforcing self-loops in the graph: simply add the identity matrix to 𝐴. or𝐷 - 𝐴 (L =𝐷 - 𝐴,
L is Combinatorial Laplacian).

2. The second major limitation is that 𝐴 is typically not normalised and therefore the multiplication with 𝐴 will completely
change the scale of the feature vectors. E.g, some nodes have more connections. We can solve it by multiplying 𝐷^{-1}
where𝐷 is the diagonal node degree matrix.

graph Adjacency Degree

Symmetric normalised Laplacian

multiplying the left and right by the square root of the degrees
of nodes i and j respectively is to consider the degrees of the
points on both sides of an edge.



Graph Neural Networks
Pytorch framework:

PyTorch Geometric(PyG): https://pytorch-geometric.readthedocs.io/en/latest/

https://pytorch-geometric.readthedocs.io/en/latest/


Zhang, Y., Valentino, M., Carvalho, D. S., Pratt-Hartmann, I., & Freitas, A.
Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational AutoEncoders. 

NAACL Findings 2024.

Motivation: Syntactic injection of language models.

Syntactic injection of language models via low-dimensional latent Gaussian space
with graph neural networks.

What’s the relation between syntax and semantics in this work? semantics: word 
content + order (i.e, word order typology); syntax: constituency tree - word content. 

How to get the syntactic tree? constituency tree parser.

[1] Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro, Miloš Stanojević, Phil Blunsom, and Chris Dyer. 2022. Transformer Grammars: Augmenting Transformer Language Models with Syntactic 
Inductive Biases at Scale. Transactions of the Association for Computational Linguistics, 10:1423–1439.

[2] Xiang Hu, Qingyang Zhu, Kewei Tu, Wei Wu, "Augmenting transformers with recursively composed multi-grained representations". In the Twelfth International Conference on Learning 
Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

https://aclanthology.org/2022.tacl-1.81
https://aclanthology.org/2022.tacl-1.81
https://faculty.sist.shanghaitech.edu.cn/faculty/tukw/iclr24.pdf


Methodology: 
Q1. How to efficiently encode syntax in latent spaces?

Encoding syntax in latent space: we first propose four
encoding strategies to evaluate their capabilities to represent
syntactic information.

Single encoder with multi-task learning: 

(1) LSTM: jointly train with LSTM decoder.

(2) VGAE: jointly train with Graph VAE.

Dual encoders with architectural constraints:

(3) Siam: two bert encoders, one with flatten syntax.

(4) GraphEncoder: graph and language encoders.  

Targeted injected space: Optimus.



Empirical analysis
Syntactic representation evaluation: quantitatively evaluating syntax space, including: 

(1) latent space geometry: sentences with the same/different features are clustered/separated in the latent
space. In this case, we can evaluate the organisation of the latent space via MSE of k-mean, denoted by
MSE(sem/syn). 
(2) tree depth: we train a linear classifier to predict tree depth. 
(3) semantic-syntax separation: Mutual Information, KL divergence, and Wasserstein distance. 



Empirical analysis
Visualisation of syntax space: evaluating cluster and separation of syntax space via t-SNE. If the latent space
can encode the clear syntax feature, we should see clear syntax cluster and separation.

(top: LSTM, VGAE, Siam, bottom: graph encoders with GraphSAGE, GCN, 
TransformerCONV).

Observation: graph-language encoders can better represent
syntax information and semantic-syntax separation. 



Empirical analysis

Decoding problem: decoding under heterogeneous spaces (graph-language encoders) leads to worse
languagemodelling performance (lines 05 vs 09-11) because of distinct latent space geometries from
syntax and semantic spaces.

* As for math expression, we evaluate it with BLEU on four Out-Of-Distribution test sets.



Methodology: 
Q2. How to decode over heterogeneous spaces?

Decoding heterogeneous space: we inject distinct spaces into different spaces of decoder.

Optimus(mem): the latent space is injected into K and V.

Ours: injecting semantic-syntax spaces into different decoder’s space. That is, 
injecting syntax into Q and semantic into K and V.



Three injection operations: (1) addition, (2) mem, (3) tensor fusion[1]. For syntax injection: (1) and (3). For 
semantic injection: (1), (2), and (3).

Finally, four combinations: addition Q + mem KV; addition QKV; fusion Q+mem KV; fusion QKV

[1] Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, AmirAli Bagher Zadeh, and Louis-Philippe Morency. 2018. Efficient lowrank multimodal fusion with modality-specific factors. In Proceedings of the 56th Annual Meeting of the Association 
for Computational Linguistics (Volume 1: Long Papers), pages 2247–2256, Melbourne, Australia. Association for Computational Linguistics.

Methodology: 
Q2. how to decode over heterogeneous space?



Empirical analysis

Language modelling task:

1. injecting only syntax in Q can
improve LM performances on
explanatory sentences. (05 vs
12,14,16,18).

2. injecting semantic and syntax
spaces into different attention
components can additionally
improve model performance.
(lines 9-11 vs 12, 14, 16, 18)

3. addition injection with Bert -
TransCONV (line 17) can achieve
the best overall results.



Empirical analysis
Question: Why graph-language encoders can improve language modelling performance? 

Observation: Comparing vanilla Optimus with Bert-TransCONV(addition Q), the latent space can better encode 
lexical information. 

Hypotheses: language encoder induce information bottleneck (i.e., trade-off between semantics and syntax), 
dual encoders can alleviate such bottleneck (see our paper for proof).



Empirical analysis

Latent traversal:

Given an input, performing random
walk (e.g., Ornstein- Uhlenbeck)

Observation: 

Graph-language encoders setup 
leads to better generation control.

Traversing syntax lead to both
syntax and semantics changed.



Additional References



Language VAE: literature review

Prior Latent Space Model Name Encoder-Decoder

Fixed

Gaussian sentence

DG-VAE [10] LSTM

AdaVAE [9] GPT2-GPT2

Optimus [5] Bert-GPT2

LLaMaVAE [4] sentenceT5-LlaMA

(Bowman et al., 2015) [16] LSTM

DELLA [1] GPT2-GPT2 or Transformer

semantic-syntax

(Zhang et al., 2024) [3] Bert-TransCONV-GPT2

(Bao et al., 2019) [2] LSTM

(Chen et al., 2019) [8] LSTM

SIVAE [11] LSTM

vMF sentence (Xu and Durrett, 2018) [15] LSTM



Prior Latent Space Model Name Encoder-Decoder

Trainable

hierarchical sequence HRQ-VAE [12] Transformer

sequence T5VQVAE [13] T5

single sentence FlowPrior [14] LSTM

single sentence DPrior [7] Bert-GPT2

hyperbolic APo-VAE [6] LSTM

label-content VAE-DPrior [17] Bert-GPT2

CVAE: Gaussian (Fang et al., 2021)[18] Transfomer

CVAE: Gaussian PPVAE [19] LSTM

CVAE: Gaussian T-CVAE [20] Transformer

Language VAE: literature review
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Trends



Closer integration with transformer interpretability

Mechanistic interpretability, disentanglement and transformer theory.



Multi-step semantic control as a dynamical systems model

continuous normalizing flow:

https://veryunknown.com/post/continuous-normalizing-flows/

https://jmtomczak.github.io/blog/18/18_fm.html

https://veryunknown.com/post/continuous-normalizing-flows/
https://jmtomczak.github.io/blog/18/18_fm.html


Conclusions

● Today we focused at the interface between formal semantic models 
and neural models.

● Emphasizing two dimensions: interpretability and control.

● We focused on mechanisms that allows for close semantic 
integration, with an emphasis on VAEs as an architecture.

● This allows for a complementary perspective to the current empirical 
norm: less task-oriented and more representation centered 
(fundamental linguistic and inference properties).



Appendix



Discretisation: 3. Gumbel Softmax trick

Gumbel softmax trick: Now, we want to sample from a categorical distribution. We can also sample a 

noise from Gumbel distribution.

Recap: In VAE, stochastic sampling from a distribution will stop the deterministic backward propagation. 

Therefore, we use reparameterization trick (i.e., sampling a noise following a standard Gaussian distribution).



Discretisation: 3. Gumbel Softmax trick

Proof: why adding a Gumbel noise is the same as sampling from
a categorical distribution? 


