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Motivation

Some language interpretation tasks require additional levels of
safety and control.

While Language Models (LMs) have provided a flexible foundation
for addressing a diverse spectrum of tasks, can we develop
language representation/models with more granular levels of

control and interpretability?

Provocative question: Is it sufficient to assume that LMs will build
rigorous representation of reality and language use?



Motivation

Critical applications: medicine, law, decision support, etc.

But also: end-user facing applications.



Patients living in the San Francisco area with ErbB2+ breast cancer, a body weight > 60
kg, and a history of treatment with Cyclophosphamide in the last year, are eligible for this
clinical trial.

Q: How do models represent these concepts?
Q: Do they deliver consistent conceptual inference?

Clinical Trial Report - Eligibility Criteria

Inclusion criteria

 Patients with a history of chemotherapy treatment within the last 24 months.
Age > 60 years

HER2-positive T1 histologically confirmed invasive carcinoma of the breast.
Body weight > 110 lbs

Patients be California residents

Exclusion criteria
* Pregnant women



Expert-level scientific inference & explanation

Claim: BRCA2 promotes the joining of undamaged homologous repair
molecules via RAD51 homolog 1 in humans.

BRCAZ2 and RAD51 homolog 1 are both The binding of BRCAZ2 and RAD51 homolog 1 catalyzes the
involved in HRR in humans. joining of undamaged homologous molecules.

RAD51 is a eukaryotic gene that BRCAZ2 promotes the assembly of RAD51 BRCAZ2 is a human protein involved
encodes the RAD51 homolog gene. homolog 1 onto SS DNA in HRR. in DSB DNA break repair via HRR

BRCAZ2 is a human protein involved in HRR. HRR is a DSB DNA repair process wherein damaged DNA is
replaced by undamaged homologous molecules from sister
chromatids or paternal/maternal copies of chromosomes.

BRCAZ2 is a human gene that BRCAZ protein is a tumour
encodes the BRCAZ2 protein. suppressor involved in HRR.
T HRR repairs damage to DNA using information HRR is the primary process for
copied from a homologous undamaged molecule. repairing DNA double strand breaks.

Undamaged homologous molecules are provided by sister chromatids

~1.000.000.000 facts or paternal/maternal copies of chromosomes.




Claim: BRCA2 promotes the joining of undamaged homologous repair
molecules via RAD51 homolog 1 in humans.

BRCA2 and RAD51 homolog 1 are both
involved in HRR in humans.

The binding of BRCA2 and RAD51 homolog 1 catalyzes
the joining of undamaged homologous molecules.

Q: How do models represent sentences and their entailment relations?
Q: In which cases will inferences fail?
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Conclusion
Patients with loss of PALB2 may benefit from PARP1 inhibition due to synthetic lethality, causing cellsto rely on a
singular mechanism to repair cumulative damage to DNA.

Intermediate Steps

24. Loss of PALB2 leads to a deficiency in HRR, causing the cells to rely on other DNA repair mechanisms.
(Combination of premises 8, 15, 16, 21, 22)

25. Inhibiting PARP in cells lacking PALB2 results in the accumulation of DNA damage due to the reliance on a singular

repair mechanism, leading to synthetic lethality. (Combination of premises 5, 9, 10, 24)
Premises

5- Inhibiting PARP results in accumulation of SS breaks.

6- NHEJ does not use a template to repair DSB and can cause increased genomic instability.
7- PARP1 synthesis PAR which recruits repair proteins to sites of DNA damage

8- In the absence of functional HRR genes, DNA repair defaults to NHEJ.

9- PARP1 synthesises PAR.

10- PAR recruits repair proteins to damaged DNA site.

15- PALB2 is required for the localization of BRCA2 to sites of DNA damage

16- PALB2 encodes a major BRCA2 binding partner that controls its intranuclear localization and stability.

17- RAD51 is a eukaryotic gene that encodes the RAD51 homolog gene.

18- BRCA2 promotes the assembly of RAD51 homolog 1 onto SS DNA in HRR.

19- BRCA2 is a human gene that encodes the BRCA2 protein.

20- BRCAZ2 protein is a tumour suppressor involved in HRR.

21- HRRis the primary process for repairing DNA double strand breaks.

22- HRR repairs damage to DNA using information copied from a homologous undamaged molecule.

23- Undamaged homologous molecules are provided by sister chromatids or paternal/maternal copies of chromosomes.



The Neuro-symbolic approach

The Neuro: Language Models (LMs) as the foundation for scaling-up
language interpretation (content-based, flexible).

The Symbolic: LLMs alone do not deliver complex and controlled inference.

Epistemological foundations:
* Building on >2000 years foundations on epistemology & formal reasoning.
* Precisely defining formal and material inference.

* Integrating epistemological priors as controls within LMs.
* Evaluating on real-world inference conditions.

> 2000 years
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To summarise

Language understanding and inference implies:

- Representation of complex sentence structures.
- Interpretation of complex concepts.

- Interpretation of contextual differences.
- Step-wise, controlled inference.



Today

Methods for integrating the flexibility of LMs to the control of formal
models (Neuro-symbolic NLP models).

The angle: less ‘task-oriented’.

Zooming into the representation of well-defined linguistic objects
(sentences and inference).

E.g.

- Sentences with complex structures.

- Sentences referring to conceptual representations
(e.g. definitions, explanations)

- Interface between content and structure.



Prevalent Paradigm (Extrinsic Evaluation)
Task X

Supporting annotated Extrinsic

dataset for Task X Input Model A Output Measures

Assumptions:

Dataset is a proxy approximation for Task X.
Dataset is roughly representative of the scope of Task X.

* including the distribution of the ling./inf. phenomena associated with Task X.
Out-of-Distribution (OOD) generalisation is defined in terms of other datasets.
A characterisation of the ling./inf. phenomena associated with Task X are not at the centre.
Aggregate extrinsic measures provide an absolute and comparative indicator of how Model A

addresses Task X.

Overall nature of the empirical claims:

Interventions behind Model A improves interpretation of Task X wrt to Datasets 1,2,3 ...
Interventions behind Model A improves interpretation of Task X as compared to Models B, C, D, ...
Without that intervention (ablated Model A’), ceteris paribus, we decrease of performance wrt A.



Representation/Interpretability-based Evaluation

Task X .
| Outout Extrinsic
Supporting annotated Input Model A utpu Measures
datasetfor Task X 7 Y
~~~~~~~~~~~~~~~~~~~~~~ Intrinsic
Ling./Inf. Categories and Structures Measures

Assumptions:

* Interpreting Task X subsumes addressing ling./inf. categories a, B, y. (common across other tasks).

* To address Task X it is desirable that the model induces a representation which reflects a, B, v, ...

* A characterisation of the ling./inf. phenomena associated with Task X is at the centre.

 Dataset covers a, B, y, within a quantifiable distribution.

* Aggregate intrinsic measures provide an absolute and comparative indicator of how Model A
addresses a, B, Y, ...

Overall nature of the empirical claims:
* Interventions behind Model A improves interpretation of a, 3, y as content-expressed in Datasets 1,2,3 ..
* Interventions behind Model A improves interpretation of a, B, y as compared to Models B, C, D, ...

 Without that intervention (ablated Model A’), ceteris paribus, we decrease of performance wrta, B, v .



Value

* Promotes an evaluation perspective which is semantically granular.

* Allows a deeper understanding of the transferability of the results.
* E.g. Target properties can be different across languages.

* Allows the design of models which are better linguistically grounded.

* Provides an alternative empirical pathway to do NLP beyond an extrinsic
evaluation dogma (‘milking the F1-score cow’).

* Formal grounding as an enabler of safety mechanisms.
(which types of inference are covered)



Formal intervention

Linguistic Categories __ Extrinsic
and Structures
Task X Measures
Supporting annotated o
gpt tgf A Input Output | insic
atasetforTask X T _Paeel
,,,,,,, C) Measures

Ling./Inf. Categories and Structures



Representation & Reasoning

- step-wise explicit inference
Premises - verifiability
Facts F |: (I) Conclusion F I_ (I) - logical correctness
Background knowledge computes an answer + explains an answer - completeness
- control

Formal inference

Abstractive/Inductive
Logical
Deductive

Select Mechanistic
Entail Explanatory
- Answer _ Argumentative ‘
. Structural
Numerical

~ Causal
- Equational |_
LLMs Formal
Neuro » Symbolic

Material (content-based) inference




Outline for Today

Contrasting Formal vs Neural/Latent perspectives of semantics
Controlling Language Models (LMs)

Language Variational Autoencoders (VAES)

Semantic Control via Conditional VAEs

Building & Probing Language VAEs (LangSpace & LangVAE)
Improving Separability

Discretisation & Control

Syntactic & Structural Control

Trends
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Representing senté



Formal perspectives on sentence representation: Syntax

‘Loss of BRCA2 may cause increased genomic instability.’

S The syntactic perspective

Part-of-Speech, constituency, dependencies, ...

VP
POS: Allows for a robust categorical system

Syntax: Describes how diferente types of word connect

VP
NP Words -> POS
may Words -> Phrases
PP MD NP Phrases -> Syntactically correct sentence
Loss cause
NN VB
of BRCA2 increased
VBN

N NNP

genomic instability

] NN



Montague Semantics

Adding the set-theoretical/functional perspective (Montague semantics)

‘Loss of BRCA2 may cause increased genomic instability.’
S

NP

Loss
NN

NP

of BRCA2 increased

VBN
N NNP

genomic instability
1) NN




S How do words, phrases functionally combine into a sentence?

compositionality

NP
Genomic(Instability) = Ay.(Instability(y) A Genomic(y))

vB NP
increased
\ instabilities
VBN
genomic instability
]) NN

genomic ing

AP \y.(P(y) A Genomic(y))  Ay.Instability(y)




Jdz (Loss(x) A BRCA2(x) A ¢ (Jy (Increase(y) A Genomic(y) A Instability(y)) A Cause(zx,y)))

S Lead to a formal meaning representation

Why formal?

- Well defined properties
- Computable expression

compositionality

NP
Genomic(Instability) = Ay.(Instability(y) A Genomic(y))

vB NP
increased
instabilities
VBN
genomic instability
]) NN

genomic ing

AP \y.(P(y) A Genomic(y))  Ay.Instability(y)




Davidsonian Semantics

Event semantics perspective:

deq, eo, e3 (Loss(e;, BRCA2) A Cause(es, e1, Increase(es, Genomiclnstability(es))) A Possible(es))

1. e; is an event in which BRCA2 is lost.
2. e is an event which is possibly caused by e; and results in es.

3. e3 is an event of increasing genomic instability.



Neo-Davidsonian Semantics

The Neo-Davidsonian semantics separates the action or verb from its
participants and properties, using distinct predicates to describe each
aspect of an event.

/ Loss(e1) A Agent(e;, BRCA2)A \
Cause(ez, e1) A Possible(ez)A

Increase(es) A Theme(es, Genomiclnstability)A

\ Result(es, e3)

Jdeq, ez, e3

1. e; is characterized by the predicate Loss and involves BRCA2 as an agent.
2. ey is a causative event possibly stemming from e; and results in es.

3. es is characterized by the predicate Increase with Genomiclnstability as
its theme.



Abstract Meaning Representation (AMR)

‘Loss of BRCA2 may cause increased genomic instability.’

(cause-01
:ARGO (loss-01
:ARG1 (gene
:name (name :op1 "BRCA2")))
:ARG1 (increase-01
:ARG1 (instability-01
:mod (genomic)))
:mod (possible-01))



Semantic Role Labelling (Shallow semantics)

Argument Structure Theory (AST)

cause(Loss of BRCA2, increased genomic instability)

Agent Effect

Predicate (V): "cause"
Agent (A0): "Loss of BRCA2"
Effect (Al): "increased genomic instability"

Thematic (B) roles

Semantic Tags

Description and Example

ARGM-DIR Directionals. E.g. all waves transmit energy from
one place to another

ARGM-PNC Purpose. E.g. many animals blend in with their
environment to not be seen by predators

ARGM-CAU Cause. E.g. cold environments sometimes are white
in color from being covered in snow

ARGM-PRP Purpose. E.g. a pot is made of metal for cooking

ARGM-EXT Extent. E.g. as the amount of oxygen exposed to a
fire increases the fire will burn longer

ARGM-LOC Location. E.g. a solute can be dissolved in a solvent
when they are combined

ARGM-MNR Manner. E.g. fast means quickly

ARGM-MOD Modal verbs. E.g. atom can not be divided into
smaller substances

ARGM-DIS Discourse. E.g. if something required by an organ-
ism is depleted then that organism must replenish
that something

ARGM-GOL Goal. E.g. We flew to Chicago

ARGM-NEG Negation. E.g. cactus wrens building nests in cholla
cacti does not harm the cholla cacti

ARGM-ADV Adverbials

ARGM-PRD Markers of secondary predication. E.g.

ARGM-TMP Temporals. E.g. a predator usually kills its prey to
eat it

O Empty tag.

Vv Verb.

ARGO Agent or Causer. E.g. rabbits eat plants

ARGl Patient or Theme. E.g. rabbits eat plants

ARG2 indirect object / beneficiary / instrument / attribute /
end state. E.g. animals are organisms

ARG3 start point / beneficiary / instrument / attribute. E.g.
sleeping bags are designed to keep people warm

ARG4 end point. E.g. when water falls from the sky that

water usually returns to the soil




Formality spectrum

<

AMR Montague
| Formal spectrum
< | | >
AST/SRL Davidsonian
Less structure
: More structure

Broader categories

+Robust parsing + Expressive

+ Flexible + Granular

- Approximative + Controlled

- Control + Well-defined properties

- More brittle



Representing complex sentences

A fluoroscopic study which is known as an upper gastrointesti-
nal series is typically the next step in management, although
if volvulus is suspected, caution with non water soluble con-
trast is mandatory as the usage of barium can impede surgi-

cal revision and lead to increased post operative complications.



Representing complex sentences

A fluoroscopic study which is known as an upper gastrointesti-
nal series is typically the next step in management, although

trast is mandatory as the usage of barium can impede surgi-

if volvulus is suspected, caution with non water soluble con- '

cal revision and lead to increased post operative complications.

A fluoroscopic study
is typically the next
step in management.

Proposition 1

This fluoroscopic study
is known as an upper
gastrointestinal series.

Volvulus is suspected.

Caution with non
water soluble con-
trast is mandatory.

Proposition 2

Proposition 4

The usage of barium can
impede surgical revision.

Proposition 3

The usage of barium can
lead to increased post
operative complications.

Proposition 5

Proposition 6




Complex Sentence Representation

CLAUSAL/PHRASAL TYPE HIERARCHY  # RULES
Clausal disembedding
1  Coordinate clauses coordinate 1
2 Adverbial clauses subordinate 6
3a  Relative clauses (non-restrictive) subordinate 5
3b  Relative clauses (restrictive) subordinate 4
4  Reported speech subordinate 4
Phrasal disembedding
5 Coordinate verb phrases coordinate 1
6  Coordinate noun phrases coordinate 2
6  Participial phrases subordinate 4
8a  Appositions (non-restrictive) subordinate 1
8b  Appositions (restrictive) subordinate 1
9  Prepositional phrases subordinate 3
10 Adjectival and adverbial phrases subordinate 2
11 Lead NPs subordinate 1
Total 35

Niklaus, Cetto, Freitas, Handschuh ACL (2019)



COORD

Contrast
cor ore
SUBORD SUBORD
Elaborationgefining Condition
cor ontext contex ore
Afl scopic study A fl scopic stud :
A fluoroscopic study A fluoroscopic study < . SUBORD
is typically the next is known as an upper
: . : . suspected. Background
step in management. gastrointestinal series.
s ontext
Caution with non
water soluble contrast C%QIED
is mandatory. L
core ore

The usage of
barium can lead
to increased post
operative complications.

The usage of
barium can impede
surgical revision.



Getting the concepts right: representing NL definitions

* Essential attributes of a conceptualisation.
* Abundance of NL definitions in discourse.
* Definition semantic roles (DSR): Decomposing conceptual components.

DEFINIENDUM DIFFERENTIA QUALITY SUPERTYPE DIFFERENTIA-EVENT

Homologous recombination repair is a DNA repair process that

includes the invasion of an undamaged DNA molecule by a damaged
molecule of identical or very similar sequence.

Santos, Freitas, Handschuh, AAAI (2018, 2019)



Representing definitional sentences

has particle

--------------------------------- D 0000 5000 5 e . 2 . 5 5 S S 2 5 S € S D S 8 2 i
: ' : | ' | !
b . . H | I
to E origin - : [role] | E
Co location : particle ' :
: 1 | | Cr. |
Voo i : differentia modified by . quality :
. - - | . " T
CoL associated : Fy quality modifier :
N — |

S fact 8 ° E
A o - supertype = :
| | | C @ :
! | | (S Pt [
o | = 0 differentia has component ) |
b 5 purpose - has type 0 —p P » event time :
' v - ] event

' ' Q L

' | : & v

! | | |

oo accessory — ﬁ—h definiendum |

' == 1 -

; | quality o :

: E 0 : ) event

' i | I i

' : o - ocation

; ' | accessory | | ® ;

; determiner E

Q: Can these formal categories inform better conceptual representations?

Santos, Freitas, Handschuh, CogAlex (2016)






Natural Language Inference

E.g. EntailmentBank, each step shows distinct reasoning behaviour (i.e., substitution,
conjunction, etc).

Question: in which way are evaporation and condensation are similar?
Answer: both are caused by phase changes in heat energy

- . ﬂ
evaporating and condensing can be
caused by in
}_ ARG insertion:
in
v
is a measure evaporating and condensing can be =
of caused by
Frame substitution:
o phase changes to
evaporating and
condensing
can evaporating and condensing -
6 cause phase changes are both phase changes
Frame-CONJ:
evaporating and =4
condensing

evaporating is a kind of condensing is a kind of
- phase change phase change




Contrasting to neural models



Cross-encoder model for sentence similarity

Sim. score

Scalability problem, pair-wise comparison

S1: Loss of BRCA2 may cause increased genomic instability.

2: Genomic instability could increase as a result of BRCA2 loss.

n

3: This is an unrelated sentence.

n



classification regression objective triplet objective
objective function function function

o = softmax(W;(u, v, |u — v|)) maz(||sq — sp|| — ||Sa — Sn|| + €,0)

1 1

The SBERT Model

Reymers & Gurevych (EMNLP, 2019)

pooling

Siamese/triplet network structure
(Schroff et al., 2015)

SNLI (Bowman et al., 2015)
(Sa, Sp, Sn) Multi-Genre NLI (Williams et al., 2018)



Sentence embeddings

Embeddings spaces

- Syntactic, semantic, compositional content, inference
properties packaged as a vector

- Distributed

S1: Loss of BRCA2 may cause increased genomic instability.

Underlying geometr
ying e Y 2: Genomic instability could increase as a result of BRCA2 loss.

n

3: This is an unrelated sentence.

n
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(CAdd& Norm )= [ :

Not trivial to define a sentence representation

Figure credit : Lara-Benitez et al, 2020

Loss of BRCA2 may cause increased genomic ...



Contrasting Properties (Representation)

Approximative

High-dimensional vector space/geometrical
Similarity-based operations

Disambiguation ‘on-read’

Syntactic, semantic & content entanglement

Latent/Poorly interpretable ling. features

Exact

Set-based/logical

Symbolic operations
Disambiguation ‘on-write’

Fully disentangled representation

Explicit ling. features



Contrasting Properties (Inference)

Approximative inference

Content centered/Material inference
Entangled inference relations

Low inference control

Robust to incompleteness, variability
Short-distance inference relations
Scalable

Less interpretable

Exact inference

Syntax centered/Formal inference
Well-defined inference relations
High inference control

Requires completeness, brittle
Long-distance inference relations
Not-scalable

More interpretable



Neuro-symbolic NLP (objectives)

Produce representations of language which allows for the
constructive integration of both perspectives.

(best of both worlds)



Embeddings spaces Semantically inconsistent space

1. humans require water and food through fossil fuels
. humans require water for survival
. humans produce small amounts of consumer food
. human has a positive impact on a plant’s survival
. humans convert food into animal prey

source: humans require freshwater for survival %
4
5
6. humans make food for themselves by eating
7
8
9

. animals require food for survival
. animals require nutrients from the air
humans eat plants for food

Y 10. animals require food for survival

target: animals require food to survive

Underlying geometry

-




Improving semantic consistency

1. humans require water for survival

. nonhumans require water for survival
animals require water and food
animals require water to survive
animals require water to live

animals require food for survival
animals require food for survival
animals require food for survival

. animals requlre food for survival

« 10. animals require food to survive
o

Embeddings spaces

source: humans require freshwater for survival

S0 NAU A WN:

+ separation
+ disentanglement

target: animals require food to survive

SRL

N ARGO-animal

I ARGO-human
N ARGO-plant
N ARGO-something

| Underlying geometry




Improving semantic consistency

. humans require water for survival

. nonhumans require water for survival
animals require water and food
animals require water to survive
animals require water to live

animals require food for survival
animals require food for survival

. animals require food for survival

. animals require food for survival

* 10. animals require food to survive
o

Embeddings spaces

source: humans require freshwater for survival

S 0N LA WL~

+ separation

target: animals require food to survive ,
+ disentanglement

Valentino et al, NAACL (2024)
Zhang et al, NAACL (2024)
Valentino et al, EACL (2024)
" Underlying geometry Zhang et al, EACL Findings (2024)
Carvalho et al, EACL Findings (2023)
Mercatali et al, NeurlPS (2022)
Mercatali & Freitas, EMNLP Findings (2021)

NEIE]




Language disentanglement

Separating the different dimensions of a model’s latent space with specific
linguistic feature (descriptively and prescriptively).

Linguistic factors

. R

“I had good teachers” “They are at the top “That won’t work again”
of their game”
| | | > time
past present future
I I I » number
singular plural unspecified
< | | » polarit
| | | polarity

positive negative



Language disentanglement

protozoan -

amoeba
gastropod & ’
s invertebrate +
Abstract conceptual factors . e e
. Sraahiom i terrestrial

aquatic (lives in water)

(more content-based) terresrial

; mammal -
rodent a

| <
bird - q duck

v

=
x5, 4
[y

~ dolphin

=
=

supertype: bird -
protozoan (organism)



Language disentanglement

Disentanglement: features and dimensions alignment (privileged). In facial images, for
example, eyes, nose, mouth, etc., can be disentangled and localised in latent space.

In a privilged basis, there In a non-privileged basis,

is an incentive for features features can be embedded

to align with basis in any direction. There is no

“direction dimensions. This doesn'’t reason to expect basis

determinatew | necessarily mean they will. dimensions to be special.
the features”

Examples: conv net Examples: word

neurons, transformer MLPs embeddings, transformer

residual stream

source: https://transformer-circuits.pub/2022/solu/index.html#section-3-2

In transformers, however, the token embeddings, residual streams, and attention vectors are non-
privileged, where more dimensions contribute to a feature.

Q: In sentence space, can sentence vectors with the same
feature have similar directions in a subspace?



https://transformer-circuits.pub/2022/solu/index.html

Cone (as a semantic subspace)

Definition: In linear algebra, a cone, sometimes called a linear cone, is a subset of a
vector space that is closed under positive scalar multiplication. thatis, Cis a cone if x
€ C implies sx € C for every positive scalar.

Convex cone: Acone Cis a convex cone if ax + By belongs to C, for any positive scalars
a, 5,and anyx, yin C. Acone Cisconvexifandonlyif C+C < C.

Q: If x and y are sentence vectors, is there a convex cone
available where all ax + By in this cone hold the same “feature”
of those sentence vectors?

0

source: from https://en.wikipedia.org/wiki/Convex cone



https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Closure_(mathematics)
https://en.wikipedia.org/wiki/Convex_cone

Disentangled sentence semantics

Sentence semantics: From argument structure theory (AST), the sentence semantics is modelled by
the relation between pred-arg structure, the associated semantic roles and distributional word content.

We simplify the sentence semantics as a composition of role-content relations:

@@ tici,mi)
- ——

1.e., ARGO—animals PRP—survival

sem(s) = él(cl, 1)

animals require oxygen for survival
HH \ . J N\ J _J/

ARGO PRED ARGl ARGM-PRP

Q: Can we define separated convex role-content cones within the
sentence space?

[1] Ray S Jackendoff. 1992. Semantic structures, volume 18. MIT press.
[2] Beth Levin. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press.

[38] Malka Rappaport Hovav and Beth Levin. 2008. The english dative alternation: The case for verb sensitivityl. Journal of linguistics, 44(1):129-167.

S
/\
NP VP
/\
N‘N VBZ NP
/\
ARGO |(Agent) PR‘ED NP PP
ARGI (‘Patient) ARG1\|/I-PRP
animal requires oxygen fo|r surv|ival



Sentence semantic disentanglement

sem(s) = tlc,r) @& ti(e,Ti)
i.e.,ARGa:animals PRP—survival

If the sentence semantics can be disentangled under EB sem(s) can be decomposed into:

sem(s) = {t1(cq, ’I°1)} D - ® {tilci, i)}

where each set represents a specific role-content cluster resolved to a hypersolid over the latent space.

Given a set of N sentences with same t(c,r) but different sem(s), the t(c,r) can be formed:

{sem(s1),...,sem(sn)} = {t(c,m)}xn @ {...}

Therefore, we can evaluate the semantic disentanglement (i.e., natural clustering property [1]) by evaluating
the density (recall) within same t(c,r) and separability (accuracy) between different t(c,r) via downstream

classifier or linear interpolation [1].

[1] Yoshua Bengio. 2013. Deep learning of representations: Looking forward. In International conference on statistical language and speech processing, pages 1-37. Springer.



ratio

Role-content cone

Observation: The addition operation ax + By can hold the sentence
semantic feature: role-content. We randomly sample the sentences with
the same role-content and calculate the ratio of ADDed sentences with
the same role-content (dark blue bar).

Semantic check for same semantic ARGO
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Problem: Different cones (i.e., role-contents) are still overlapped.

[1]1Zhang, Y., Carvalho, D. S., Pratt-Hartmann, I., & Freitas, A. (2022). Quasi-symbolic explanatory nli via disentanglement: A geometrical examination. arXiv preprint arXiv:2210.06230.
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Separating semantic features into different regions (clusters) of a model’s

latent space:

Separability
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Separability

Can we offer geometric guarantees regarding the LM inference process?

_____
o T N . .
- -~ - [
P ~ /’ ~

27 ARG1Hogg O Vo
(.- .--==~._V-require i ' .
’ \ ¢ S I: : VS ARG"I' ARGO' \Irequ|rell
ARG1 ARGO-_ . | .y .. Animals '

, | <ygén livingthin ,'
IlVlngt|\ Animals 'b 79 y 7 \\ N 2 4
\ / 9 ~ - - gt = )
\\\ O // ’,«f |I V-eat ",'\" e ]
R~ eat----2 . ,’ « ARG1-oxygen ,’

N
\\ - < ’ ~ -
- -
-~ -
. e -y w ™ o
_____




-~ N

@nnango. mmplal

Closary mnt‘l's.:...,._,_._. .
SO0 000N BOPY TV AT Y

CONNY XIRE BMELTINE 1 1o
19607 (SO MY Ve T
ASINTY POA. Wi LMK 100
Cdiates o9 wrepdee ool |

ey’ kmgualon vereddoo oyt
FALCOWAMIIRO4 100 Jireg hy - T
IELTRAPGRDO NUAMAL Lbeciienus
SETRLS/OW § Wi, o soturol!
B0 SN o6 STINEN TC
ION 18 MESAWEN 1L SN TH
Ve oM. Iw 105‘-'.)

LRSS DOM, N0 T
> ¥ G0 5 EDAD THDT BURON)

'. '. Vs P IR0 TR w |
cno o e % FASDL RUA YR !
WMEERAOWEA, IR JOURS WS ,

DME F1 o waMNe
T Qb T4 PR

BRI AN SR o
wWapai T2 reser ¢

- tn Ly ST ed (e




Style Transfer

An NLI task that consists in the separation between style-content.

[style: active]
The whole team helped pushing the rock

[style: passive]
The rock was pushed with help from the whole team



Style Transfer

Style transfer methods provide a foundation for improving control over generative
models:

o Feature-oriented losses
o Disentanglement evaluation

However, further concepts are needed for control beyond style-content
separation:

o Generative factors

o Feature localisation

o Inputaugmentation



Generative Factors

Independent underlying variables affecting the generation in a generative model.

This is manifested as a high value of:
corr(Z;,p(Y; € V)

where Z; is a single dimension in the model’s latent space representation Z, Y; (a

generative factor) is a feature of the model’s outputs Y, and Vis a small subset of all
possible values of Y.

|ldeally, they can be mapped to interpretable linguistic features.



Generative Factors

Factors Y; are often not explicit in the model’s outputs (e.g., tense,
polarity of a sentence).

They can be observed through abstraction of the explicit feature
space.

o Anintended outcome of the training process.
o However often highly entangled (distributional prop.)



Generative Factors: Extraction

Tense

Person
Gen. LM Pﬂ sentence
Subordina

tion

Quality

Extraction of such factors can be automated through specialised classifiers.



Generative Factors: Examples

Using linguistically grounded features:

 Argument Structure Theory (AST): categorising the semantic functions of
arguments in relation to the verb (e.g. agent, patient, theme, instrument).

* Definition Semantic Roles (DSR): grouping the roles according to their
contribution to either:

* meaning (e.g., quality, location)
e structure (e.g., main terms, modifiers)



Generative Factors: Examples

Hu et al., 2017: sentiment, tense.

Chen et. al., 2019: constituency parse, POS, paraphrase.

Mercatall, Freitas., 2021: tense, subj-num, person-num, obj-num, gender, verb-
obj, negation, verb-style, sent-type.

Carvalho et. al., 2023: supertype, quality, location, modifier, statement,
accessory, event.



http://proceedings.mlr.press/v70/hu17e.html
https://aclanthology.org/N19-1254/
https://aclanthology.org/2021.findings-emnlp.301/
https://aclanthology.org/2023.findings-eacl.101/

Latent space (LS) manipulation

We can manipulate a latent space during training or fine-tuning,
conforming it to a set of properties.

* Disentanglement of generative factors.
* Localisation of features for given factors.

* Linguistic consistency for linear operations.



LS manipulation: Bias induction

Inducing the necessary biases to the model can be typically
achieved by:

Augmenting the inputs with relevant features.

Supervising the training / fine-tuning with the relevant features.

Including generative factor losses to guide the training.

And their combination.



LS manipulation: Generation control

A disentangled, localized or linearly consistent latent space enables
granular control over sentence generation.

Gen. LM >D Dogs need oxigen to live 7
latent space opﬁ :
____________ Mammals need oxigen to 7
| generallze live

. subj



Generation control: Examples

Hu et al., 2017: tense

Varying the code of tense

1 thought the movie was too bland and too much this was one of the outstanding thrillers of the last decade
1 guess the movie is too bland and too much this is one of the outstanding thrillers of the all time
1 guess the film will have been too bland this will be one of the great thrillers of the all time



http://proceedings.mlr.press/v70/hu17e.html

Generation control: Examples

Chen et. al., 2019: (syntax-semantics)

Query Sentence Semantically Similar Syntactically Similar

1 have much more colours at home . even if there was food , would n’t it be | you have a beautiful view from here .
at least 300 years old ?

victor had never known darkness like it. | he had never experienced such darkness | you seem like a really nice kid .
as this .

this 1s , uh , too serious . but this is too serious . it is , however , illegal discrimination .



https://aclanthology.org/N19-1254/

Generation control: Examples

Mercatali, Freitas., 2021: Syntactic factors

Tense

Subject-number

you will not attend the party

we will not attend the party

JointVAE

you will not attend the party
you will not sign the paper
you will not attend the party

you will not attend the party
you did not join the wedding
you do not attend the party

you will not attend the party
you did not attend the party
you do not attend the party

we will not attend the party
he will not attend the party

we will not attend the party
you will not attend the party

we will not attend the party
1 will not attend the party

Factor Dimensions | Values

Verb/object 1100 [Verb/obj variations]
Gender 2 [Male, Female]

Negation 2 [Affirmative, Negative]
Tense 3 [Present, Future, Past]
Subject number | 2 [Singular, plural]

Object number | 2 [Singular, plural]

Sentence Type | 2 [Interrogative, Declarative]
Person number | 3 [1st, 2nd, 3rd person]

Verb style 2 [Gerund, Infinitive]



https://aclanthology.org/2021.findings-emnlp.301/

Generation control: Examples

Carvalho et. al., 2023: supertype, quality (vector arithmetics)

ADD

\(

a flying machine to make four copies of

a flying creature to make five copies of

a flying dinosaur to make one copy of
a flying robot to make two copies of
a flying object to make 3 copies of

AVG

AN

SUB

a female monarch

a monarch

the subnormal condition in females originating from...
the normal female pregnancy associated with some
the female given name in the Japanese game...

AN



https://aclanthology.org/2023.findings-eacl.101/

Linguistically-aware loss functions

Once linguistically grounded factors can be extracted from inputs and outputs,
their expected labels can be used to calculate additional losses for training /
fine tuning.

Tense

8 Person
Gen. LM Abﬂ sentence

Subordina
tion

Quality

, l

» - %




Linguistically-aware loss functions: Examples

Hu et al., 2017/: tense
o Discriminator probe

Chen et. al., 2019: word position, STS
o Paraphrase Reconstruction Loss
o Discriminative Paraphrase Loss (embeddings)
o Word Position Loss

Carvalho et. al., 2023: Definition Semantic Roles (DSR)
o DSRreconstruction loss (NLL)



http://proceedings.mlr.press/v70/hu17e.html
https://aclanthology.org/N19-1254/
https://aclanthology.org/2023.findings-eacl.101/

Language Variational Autoencoders (VAES)
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What is a latent variable model?

Generative modelling task:

Assume:

e datasamples x1,x2,...,xn

e from a distribution of interest Q(x)
e unknown density

We’re interested in using these samples to learn a probabilistic model approximating
Q. In particular, we want efficient generation of new samples (approximately)
distributed from Q.

Latent variable models: models the transformation from latent variable distribution
(such as std Gaussian) to Q. They include variational autoencoders (VAE), generative
adversarial networks (GAN), normalizing flow, diffusion, flow matching, etc.



Why we use latent variable model?

“What I cannot create, | do not understand.” - Richard P. Feynman

Latent variable model: provides a low-dimensional & smooth latent space (manifolds),
which allow us to “interpret” and “control” data generation over complex unknown space.

hat

—>» glass

Latent Space Geometry
(e.g., Euclidean space)

Observation Geometry
(e.g., non-euclidean space)



Overview

Latent variable model: p(x, z)

Variational inference: approximating true posterior
Evidence lower bound: Jensen’s inequality

VAE architecture: fixed std Gaussian prior and posterior
Complex fixed prior and problem: vMF distribution and hole
Trainable prior: conditional VAE

Pytorch library: pythae

1. Variational
AutoEncoder(VAE)

No oo b~ owbd=

—

Transformer-based VAEs’ architecture: Optimus
2. Language VAE 2. Objective function: negation of ELBO with KL cyclical and threshold tricks
Pytorch library: LangVAE

1. semantic geometry with normalizing flow:
“Learning Disentangled Semantic Space of Explanations via Invertible Neural Networks”
1. syntax with graph neural network:
“graph-induced Semantic-Syntax Space in Transformer-based Variational AutoEncoder”
3. Latent semantic 1. discretization with vector quantization:
control methods “Improving Semantic Controlin Discrete Latent Spaces with Transformer Quantized Variational Autoencoders”
1. label with conditional VAE:

“Learning disentangled representations for natural language definitions”
“Toward Controllable Natural Language Inference through Lexical Inference Types”
“LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent Sentence Spaces”



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=VyfR-JgAAAAJ&citation_for_view=VyfR-JgAAAAJ:zYLM7Y9cAGgC

VAE: 1. Latent variable model

Latent variable model: models the joint distribution p(x, z) = p(x|z)p(z). For
training stage, we can only access to x. Therefore, we marginalise out the
latent variables z, the target distribution:

p(z) = / po(z]2) X po(2)d(2)

@ :representsthe parameter we want to obtain.

p(z2)

color=brown,

size=onlyFace,

glasses=Yes

Toy example of latent variable model: P(x) = [ P(x|2)P(z)d(2)

0.6 1 —— Wi xPi2)

Do (33 ~) :likelihood which represents the transformation from latent -
variables to observation.

Probability Density
o o
w -

o
(N}

Do (Z) : prior distribution of latent variables.

o
Yt

o
o
.

W2 x Pz(2)

— W3 X P3(2)
— P(x)= W1 X P1(2) + Wz x P2(2) + W5 X P3(2)

However, the integration is intractable!

10




Z
(i.e., latent
space)

VAE: 2. Variational inference

approximated

Variational Inference: To avoid integrating over the whole latent space, a natural posterior

question would be “Can we infer any information about z after observing a sample?” - %)
true posterior: pg(z|x)

likelihood

posterior
po(z|2)

polzla) |

X
(i.e., sample

In VAES, the idea from “(amortised) variational inference” is to approximate the true space)

posterior ps(z|x) with a network with parameter ¢ , denoted by g4(z|x) (approximate
posterior). We can use KL: Variational inference

Dxx (g (2[x)|pe(z|x))

Dkr(gs(2l2)|po(2]z))
= /q¢(z|m) log q¢Ez||:c; d(z)
log pg(x) — Dxr(g4(2[x)([po(2[%)) = E,rg,(alx) log Po(x|2) — Dxr(g4(z|x)[|Pe(2)) || = [atcioos e

)po(x) d( )

Pz, )
H_J N v J = [ aelo) <10gp9($) +logM) (z)

po(2,7)

(1) (2) — [ astela) ogpat@)ate) + [ as(elo) g 242 ac)
Since [ gy(2|z)d(2) = 1, we can get:
We want to (1) maximize the probability of generating real data and (2) also | =ksw@+ [ates 25
minimize the difference between the true and estimated/aggregate/ approximate ~logpa(a) + [ as(elo)log - (z|(z)';?(z) 2)
posteriors.

4¢(2|7)
po(z)
= logpp(z) + Drr(94(2|7)|[Pe(2)) — Ezng,(2lz)Po(]2)

IOgPG(x) +Ez~q¢(z|z) |:1 og ——~— —pg(.TJ|Z)




VAE: 3. Evidence lower bound (ELBO)

Evidence lower bound(ELBO): the right part is also named Evidence lower bound (ELBO): the lower bound of

log likelihood of observation x.

log pg () =1Og/fp9(ﬂ?,z)dz

=log/p9(a:,z) 9s(2]2) dz
p g (z|z

?|z)
= log (Ez~q¢(z|w> [ze((fﬂ;)])

Ez~q¢ (z|z) |:10g

Vv

2y z|:1: ] Jensen’s inequality

_E, [logpo(z, 2)] + / +(2l) log <|)

q¢ z|x) log pe(z, 2) dz+/q¢(z|:1:) log

I
(— S~ —

q¢(2|)

qd, z|z) (log po(z, z) —log qs(2|z)) dz

q z\® log dz
sZle) Q¢(Z|x

>4

@

dz

Dk r(g4(2|7)||p(2|z))
:/ +(z|x) log q¢(z|x)dz

1 p(z|z)
_ —/Zq¢(z|x) log 2’28:3 dz
= [t o8 L
__ ( [ ay(cla)log? Z((;;c)) dz — / 4s(2]2) logpo(x)d2>
— / gs(2|z) log Z;Z ((lez)) di +log po ()

)




VAE: 4. Gaussian prior and posterior

Architecture: When prior is a “fixed” std Gaussian distribution, the VAE training and inference can be

visualised as:

Training: Inference:
compress reconstruct

Lvag(8,¢) = Drr(9s(22)|po(2)) = Ezmgy(zlr) 0g po(2|2)
J L

| N\

J

’ /
\ - ~ -~ A
T = ()— 2 po(z|2) > T z po(z|2) > T
0- i \
1
forward: ~—>
F N(O’ I) backward: €———————
Calculate KL between approxima L reparametefization frick y L y
posterior and std Gaussian (dim= Al v v
the latent dimension, 0: batch size Encoder q¢ (zlw) decoder pe(w|z) decoder pe(w|z)

KL = 0.5 % (mean.pow(2) + logvar.exp() - logvar - 1).sum(dim=1)

reparameterization trick: remove stochastic sampling process from deterministic backward propagation.



VAE: 4. Gaussian prior and posterior

(x - /,6)2 B = / . 2d
p1 = MNi(p1,01),p2 = Na(p2,02) n(po)= —2 e 207 mpl(m)(m Ha)dz
2 2
e ~ [ (@) ) + (i - )P
p1(z) z
KL = l d
) = [ melieg — @)~ m)de + 20 ) [ pi@)(@ - m)da + (i~ )
i) o) 2 0 ( )’ m
—g ¥ —
_ /p1 (:c)[log(#e 20’% ) . log(#e 20’% )] B ; . ( —,LL1 2”2
i 27‘(‘0’% ﬂ/27rc7§ = & H1 Mz)
1 (x—m)? 1 (z — p2)?
E — Zlog2m — logoy — + Zlog2m + logay +
/zpl(w)[ e 207 g o 207 | A=log2 + L(0% + (1 — p2)?) — . p2 = N>2(0,1)
— i — -2 o1 202 2
_/ (@)[logZ2 + (z—p2)” (2 — ) \dz 2
B wp1 901 203 201
— A 1
KL(pi[lp2) = —5 x [2logoy + 1 - oF — pi]
_ oy | (z— )’ (= — p)”
A_Lpl(x)[loga_1+ 202 201 |d KL = 0.5 * (mean.pow(2) + logvar.exp() - logvar - 1).sum(dim=1)
T — 2 1
— logZ—j = /p1(x)( 20[52) do — =
N - _ *The encoder output logvar rather than var™2 because the

B output of neural network might be < 0.



VAE: 5. Problems with a complex fixed prior

Spherical embeddings

4
Fixed prior: In addition to Gaussian distribution, there are more & i ‘:*
options to choose different prior and posterior distributions, such o/ ¢ 08 H . .

c . . 9 g - yperbolic embeddings
as “von Mises-Fisher” (i.e., hypersphere), etc. or more complex 3 . e .
structure, such as hyperbolic [1], and hierarchical spaces. (N 2 '. ® :
\ e =
<0 - o <
/

Problem of fixed priors: due to the mismatch between prior and
posterior during inference, the sampling from the area of prior,
where the aggregated posterior assigns low probability while the
prior assigns (relatively) high probability. This might lead to low
quality generation. We refer it as “hole” problem [2].

Solution: To remedy this problem, we can use a trainable prior.

[1] Mathieu, E., Le Lan, C., Maddison, C. J., Tomioka, R., & Teh, Y. W. (2019). Continuous hierarchical
representations with poincaré variational auto-encoders. Advances in neural information processing systems, 32.

Y

[2] Rezende, D. J., & Viola, F. (2018). Taming vaes. arXiv preprint arXiv:1810.00597. source from:



https://jmtomczak.github.io/blog/7/7_priors.html

VAE: 6. Trainable prior

Trainable Prior: Since the fixed prior might be too rigid, it can cause the “hole” problem, we can

design a learnable prior to induce the posterior and the prior try to match each other during training,
such as Gaussian Mixture Prior, VAMP Prior, FlowPrior[1], conditional VAE (CVAE), etc.

def log_prob(self, z):

# mu, lof_var
means, logvars = self.get_params()

# mixing probabilities
w = F.softmax(self.w, dim=0)

# log-mixture-of-Gaussians

z = z.unsqueeze(®) # 1 x B x L
means = means.unsqueeze(l) # K x 1 x L
logvars = logvars.unsqueeze(l) # K x 1 x L
po(2)
log_p = log_normal_diag(z, means, logvars) + torch.log(w)
log_prob = torch.logsumexp(log_p, dim=0, keepdim=False) #
§ return log_prob
KL
v
T —> gy(2|z) z po(z|2) >
L J L J
Y
Encoding decoding

source from:

contours represent prior where left:
Gaussian, right: Gaussian mixture.

-2 0 2

[1]Xiaoan Ding and Kevin Gimpel. 2021. ElowPrior: Learning Expressive Priors for Latent Variable Sentence Models. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 3242-3258, Online. Association for Computational Linguistics.

[2]Tomczak, J. M. (2022). Deep Generative Modeling. Springer Nature https://imtomczak.github.io/blog/7/7 priors html#introduction


https://aclanthology.org/2021.naacl-main.259
https://jmtomczak.github.io/blog/7/7_priors.html
https://jmtomczak.github.io/blog/7/7_priors.html

Language VAE: 1. Transformer-based VAEs

Optimus[1]: BERT-GPT2 architecture with Gaussian prior. The latent space is injected into the decoder with
memory injection setup (ii), which operates over the low-rank attention weights (i.e, Key and Value) directly. This
low-rank injection can avoid redundant information compared to (i) and (iii) [2].

o2 .

[ 1] ‘IoveJ ‘UoM’ Eos

[CLS] o i Optimus memory injection:
| i) @ > softmax i
A A A A i
( \ (- j—> GPT2 Layer N Query New Key
. . H f seq x 64 ® 64 % (seq+1 ® New Value
’ ,_\ ) 530 max seq+ 1) x 64
a gerr | > @ (D  — GPT2 Layer 2 |
— Vd
_ L > GPT2 Layer 1 .".: 5€q x (seq+1)
1 1 ) |
s - KT :
~ / 0 @ © > embedding layer L Attention(Q, K,V) = sofﬂnax(%)[z; V]
{ | ] ‘Iove] ‘UOMJ ‘BOS’ ’ | ’ [|ove} M eesaessasere oot '.:

[1] Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. 2020. Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4678-4699, Online. Association for Computational Linguistics.

[2]1Hu, J., Yi, X., Li, W., Sun, M., & Xie, X. (2022). Fuse it more deeply! a variational transformer with layer-wise latent variable inference for text generation. arXiv preprint arXiv:2207.06130.


https://aclanthology.org/2020.emnlp-main.378

Language VAE: 2. Objective function

Objective function: the negation of ELBO, to avoid KL vanishing (posterior collapse). Two tricks:
1. Cyclical schedule[1]: gradually and cyclically increase Bfrom0to 1.

2. KL threshold scheme[2]: for each dimension, choose the max between threshold and KL.

Lvae = —Eq, (212) log po(x|2) + B ) max [\, KLgy (2i|2)||p(2:)]

— ki_loss
— loss

120
140.0000000000000
105.0000000000000 %
*cyclical schedule: beta increasing
70.0000000000000 60
35.0000000000000 30

N = =/ strade-off between reconstruction and compression

0.0000000000000

0 11 22 33 44 55 66 77 88 99 110121132 143 154 165 176 187 198 209 220 231 242 253 264 275 286 297 308 0
0 10 20 30 40 50 60 70 80 90 100110120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310

[1] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. 2019. Cyclical annealing schedule: A simple approach to mitigating KL vanishing. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 240-250, Minneapolis, Minnesota. Association for Computational Linguistics.

[2] Bohan Li, Junxian He, Graham Neubig, Taylor BergKirkpatrick, and Yiming Yang. 2019. A surprisingly effective fix for deep latent variable modeling of text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3603- 3614, Hong Kong, China. Association for Computational Linguistics.



Language VAE: 3. Pytorch library

LangVAE: our demo can easily integrate different pretrained language models into VAE architecture.

Pretrained checkpoints:

https://huggingface.co/neuro-symbolic-ai

Train:
Only support Gaussian prior now.

https://github.com/neuro-symbolic-ai/LangVAE

Evaluation:

https://github.com/neuro-symbolic-ai/LangSpace

1. latent traversal;
2. interpolation,

3. arithmetic;

4. t-shne/UMAP/PCA;

5. disentanglement metrics.
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https://huggingface.co/neuro-symbolic-ai
https://github.com/neuro-symbolic-ai/LangVAE
https://github.com/neuro-symbolic-ai/LangSpace

Language VAE: 3. Train LangVAE

Train on the Language Modelling task: larger decoder (i.e., fixed LLaMA 1) leads to better performance[1].

Baseline | beta WorldTree WordNet Wikipedia Wiktionary
BLEU BLEURT Cosine Loss | |BLEU BLEURT Cosine Loss | | BLEU BLEURT Cosine Loss | |BLEU BLEURT Cosine Loss |
00| 021  -001 078 167 0.67 044 096 047 0.65 027 097 046| 0.63 053 097 044
Optimus | 0.1 | 038  -034 087 141| 0.56 005 093 116/ 056 006 095 092| 0.51 001 093 1.07
(BERT-GPT2)| 05| 036  -047 085 150/ 052  -002 093 138 0.54 006 094 1.07| 049 004 093 122
10| 010 -124 075 203| 045 -028 091 173| 054 004 094 1.09| 048  -006 093 139
00| 058  -001 091 063 083 0.69 097 038 083 0.60 097 036/ 0.79 055 097 041
LlaMaVAE |0.1| 056  -006 090 0.66| 0.68 022 093 052| 077 037 094 042| 064 001 090 058
(sT5-LlaMa) | 55| 055 007 090 067| 067 018 093 053] 079 038 094 043 062 001 090 059
10| 053 010 090 0.67| 0.66 0.17 092 054| 0.5 032 094 043 060  -004 089 0.60
AAE - | 035 -095 080 335 053 057 087 231 065 -0.12 096 1.07| 053 -0.75 084 198
LAAE - | 026 -107 078 371| 026 -105 078 262| 049 043 087 172 040  -095 081 2.56
DAAE - | 022 -126 076 400 017 -1.17 076 297| 054  -035 089 157| 042  -096 0.80 246
B-VAE [05| 006  -1.14 077 3.69| 004 -098 075 3.12| 018 -096 075 230/ 019 -1.13 077 328

[1]1Zhang, Y., Carvalho, D. S., Pratt-Hartmann, |., & Freitas, A. (2023). LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent Sentence Spaces. arXiv preprint arXiv:2312.13208.



Language VAE: 3. Evaluate LangVAE

Evaluation: three semantic control operators to probe latent space geometry:

1. Latent Traversal: stochastic random walk over Gaussian space, such as sampling each dimension, Brownian

motion, Ornstein-Uhlenbeck.

2. Linear Interpolation: generate a sequence of sentences following a spatial trajectory from source to target via

latent arithmetics: 2t = 271 - (1 — t) + 22 - t with tincreased from 0 to 7 by a step size of 0.7 where and
represent latent vectors of source and target sentences, respectively.

3. Latent Arithmetic: Similar to word2vec, king-man+woman=queen, adding or subtracting latent sentence vectors.

Traversal Interpolation Arithmetic




Language VAE: 3. Evaluate LangVAE

4. Visualisation: visualising semantic distribution/separation via t-SNE, UMAP, and PCA.

5. Disentanglement metrics: There are metrics widely applied in the Image domain to evaluate the
disentanglement of latent spaces, including: 1. mutual information gap (MIG), 2. modularity, 3.
disentanglement score, 4. completeness score, 5. informativeness score, etc.

Set of K Latent Representations of Dataset

H(Z) H, Hy H, Hy (\ g 20 1’8 ’U(l) ’Ug ’U?V
MI(z,v) = H(z) — H(z[v) p :

K K K K
z v v v v}
H(z[v) H{ | HY | H HY J L ?K 0 1 2 K

--------------------------------------------------

Example of calculating Entropy (H):

_ v _ v MI(z, mre | v | e MI For the first dimension, Set N bins with range and count how many latent vectors left in
MIG(v) = MI} — MT; (20) Ul el v this dimension.
A MIG(v) ML | - |MI}

The p of each bin the the ratio.

bigger difference indicates better disentanglement

1
1
1
1
]
1
1
. = 0
L , maz(vy) — min(vo)
i and j are the index of dimension ) m’m('uo) <wg < m’m(vg) + -
with the first two biggest Mis X bin
1
1
1
1
1
1
1
1
1
]

Hy=-) pxlogp
bin

__________________________________________________

E.g., Mutual Information Gap(MIG)

N e e e e e e e e e e e e e e e e e e e e o P




Normalising flow: 1. Change of variables

Change of variables formula: transformation from one distribution to another distribution.

dZ()

Pl(zl) — 170(750)|d—z1

po(z9) :asimple distribution

p1(z1) :acomplexdistribution

f1 : a neural network
| dz,
le

: Jacobian determinant.

Normalise the probability density.



Normalising flow: 2. Objective function

Normalising flow: a sequence of changes of variables.

backward
>
fi Zo) fi(zi—l) fz—}—l(zz)
()= (=) - (=) (2x0) = x
/,/ \\\ ,,/ \\\
/! \ / \
] \ ] \
'5‘5 : ! Zl!}_ '{‘_’JYS.‘
\ / \\ / ‘\ /
’ \ ’ \ /
\\ /’ \\ ,// \\ ,//
Zy NpO( ) Z; Npi(zz) Zg NPK( )
forward

source: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Objective function: maximise the log-likelihood.

(zi-1)

Zi—1

log p(x) = log po(20) Z log |det df;

Normalizing flow:

p(x) = p(2k) = fre—1(2k-1) 0+ 0 fi(z0)

For i-th step:

Ri—1 "™ pi—l(zi—l)
2 = fi(zi1)

zio1 = fi (zi)

(1) according to the change of variable formula:

i) = s (17 a0 aer T )

(2) according to the inverse func theorem: For instance,
y=f(z)andz = f~'(z):

i '(y) _daz df(w)
T ——(—) =(=—)"

We can get:

pz(zz) =pi—1(zi—1)

det <df (%‘-1)) -

dzz 1

(3) according to the property of Jacobians of invertible func:
det(M~1) = (det(M))~?
-1

df (zi-1)

Zi—1

det

pz(zz) = pifl(zi—l)

(4) Finally, the log of p;(z;):
df (Z -1)

log p;(2;) = log pi—1(2—1) — log |d =

(5) For the whole process, the final log p(z) is:

logp(;c)
= logp(zk)
= log pi—1(zk—1) — log det%
Zk—1
= (logpk—z(zk_z) —log detW)
Zk—2

log pr—1(2K—1)
dfr(2k—1)
d

—log ‘det
Zk—1

detdfz(zz 1)

2i—1

= log po(20) Z log

i=1




Normalising flow: 3. Architecture

Architecture: each fis a neural network, such as affine coupling layer, which should

satisfy two conditions:

1. get the inverse:

the inputs of t and s do not change in both direction,

X 1:d

Xd+1:D

oy
(a) Forward propagation (b) Inverse propagation oxT

Yi:d = X1:d
Virl:p = Xg+1:p © exp(s(x1.q)) + t(x1.4)

S and t can be arbitrary neural networks.

(yd+1:D — t(

Y1i:d

) © exp(—s(

2. easy to compute Jacobian:

0

therefore, they can be any kind of neural network.

y1:a)

diag(exp[s(x1.p)])



Normalising flow: Pytorch library

Pytorch framework for normalising flow:

FrEIA: https://vislearn.github.io/FrEIA/ build/htmU/tutorial/quickstart.html

roIAl

normflows : https://github.com/VincentStimper/normalizing-flows

INI®4

normflows : A PyTorch Package for Normalizing Flows

normflows is a PyTorch implementation of discrete normalizing flows. Many popular flow architectures are
implemented, see the list below. The package can be easily installed via pip. The basic usage is described here,
and a full documentation is available as well. A more detailed description of this package is given in our
accompanying paper.

Several sample use cases are provided in the examples folder, including Glow, a VAE, and a Residual Flow.
Moreover, two simple applications are highlighed in the examples section. You can run them yourself in Google
Colab using the links below to get a feeling for normflows .

Link Description

ZC Open in Colab
ZC Open in Colab
ZC Open in Colab

Real NVP applied to a 2D bimodal target distribution
Modeling a distribution on a cylinder surface with a neural spline flow

Modeling and generating CIFAR-10 images with Glow

Implemented Flows

Architecture
Planar Flow
Radial Flow
NICE
Real NVP
Glow
Masked Autoregressive Flow
Neural Spline Flow
Circular Neural Spline Flow
Residual Flow

Stochastic Normalizing Flow

Reference

Rezende & Mohamed, 2015

Rezende & Mohamed, 2015

Dinh et al., 2014

Dinh et al., 2017

Kingma et al., 2018

Papamakarios et al., 2017

Durkan et al., 2019

Rezende et al., 2020

Chen et al., 2019

Wu et al., 2020



https://vislearn.github.io/FrEIA/_build/html/tutorial/quickstart.html
https://github.com/VincentStimper/normalizing-flows

B

(i.e., inference
type)

e

(i.e., latent
space)

depeﬁdgncy

X
(i.e., sample

o (x| 2) po(x|2z, 1)



Conditional VAEs
Recall: objective function of VAE (ELBO): ]Equ¢(z|x) log pe(x|z) — Dx1(q4(2|x)||pe(2))

Two types of conditions: (1) zand y (i.e., label) are independent; (2) zand y are dependent.

@ p(2|y) )
L

p(z, z) = p(z|2)p(2) p(z,y,2) = p(z|y, 2) x p(2) x p(y) p(z,y,2) = p(zly, 2) x p(zly) x p(y)
p\rz:): prior

From introduction to CVAE: https://beckham.nz/2023/04/27/conditional-vaes.html



https://beckham.nz/2023/04/27/conditional-vaes.html

CVAE: when y and z are independent

Independency: wheny and z are independent, the label is injected into encoder and decoder during
training. The prior is a fixed distribution.

z learns residual information [mask] + [content]

]
1
1
y ! 1
: 3
! J BERT z GPT2
1
H .
1
r ——>iq4(2]z,y) z po(x|2,y) —{ & ' I I
/ U \ 1 [sentiment] + [content] [sentiment] + [content]
1
|
1
p(z,y, 2) = p(z|y, 2) X p(2) X p(y) : |
;i’;: . . ] . Inference: [sentiment] + [content]
Y Al 1 T
|
Encoder g4 (2|, y) decoder py(x|z,y) :
|
|
I
|
1
|
1

IIE‘:,erqqg(z|:1r;,y) 1ng9(x|z7 y) _ DKL(q¢(Z|x7 y)Hp@(z))

———————————————————————————
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CVAE: when y and z are dependent

Dependency: when y and z are dependent, the prior can be a trainable encoder. The label is injected
into encoder, decoder, and a “trainable” prior encoder.

D I’ Training:
Y ] [mask] + [content]
L 1
prior 9(Z| I
1
== : = . ’
KL . a BERT @ GPT2
\! ﬂ \/ :
1
I . . (1 1
T >qqs( 2|z Z o(Z|2 > T ' .
dJ( l ,y) U o ( l ,y) : [Senhmcht) T(z) [sentiment] + [content]
1 [sentiment] + [content]
1
1
[ e 1 .
¢ 1 ) 1 Inference: [sentiment] + [content]
Y Y 1 T
Encoder ¢4(2|z, y) decoder py(z|z,y) :
1
1
1
1
1
1
1

Ez~q¢(z|az,y) 1ng9(xlz7 y) — DKL(Q¢(Z‘$, y)Hpg(z\y))

———————————————————————————
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Carvalho, D. S., Mercatali, G., Zhang, Y., & Freitas, A. Learning disentangled representations for natural language
definitions. EACL Findings (2023).

Background: investigating the disentanglement of semantic role label via CVAE when y and z are
independent, denoted by C.

roles
tokens H tokens
roles E “
EZNQ¢(Z|$,y) logpg(w|z, y) - DKL(q¢(Z|:C7 y)||p9(z))
--------------------------------------------------- rec. loss

Optimus-based

D z-diff z-min-var | MIG Modularity

u S C| U S c|U S c|yu S C
WN |.645 .673 |.669| .483 .509 .517|.023 .012 [.006||.724 .766 .750
WT | .516 .532 [.589| .458 .441 .480|.016 .013 |.043||.827 .813 .809
WP | 513 .544 |.641| .471 .486 .552|.010 .011 [.033|[.956 .942 .943
D Explicitness— Disentanglement Completenéss — Informativeness |
u S cC| U S cCijl U S c|| U S C
WN |.501 .500 |.501| .058 .040 [.049(|.039 .027 |.032|.398 .377 |398
WT |.559 .547 |.573|.013 .026 [.028|/.009 .018 [.019| .333 .316 |.305
WP | .548 .532 |.594|.024 .054 |.060(|.016 .034 |.038| .288 .282 |[280

ACC+DIFF-EVENT
W ACC-DET+DIFF-QUALITY
N DIFF-EVENT
BN DIFF-EVENT+DIFF-QUALITY
N DIFF-EVENT+EVT-LOC
DIFF-EVENT+EVT-TIME
W DIFF-QUALITY
EER DIFF-QUALITY+DIFF-EVENT
DIFF-QUALITY+MOD
DIFF-QUALITY+ORIG-LOC

N DIFF-QUALITY+PURPOSE
N ORIG-LOC
B SUPERTYPE

) ©

ACC+DIFF-EVENT
W ACC-DET+DIFF-QUALITY
WM DIFF-EVENT
s DIFF-EVENT+DIFF-QUALITY
= DIFF-EVENT+EVT-LOC
DIFF-EVENT+EVT-TIME
. DIFF-QUALITY
=N DIFF-QUALITY+DIFF-EVENT
DIFF-QUALITY+ORIG-LOC
DIFF-QUALITY+PURPOSE
== ORIG-LOC
W SUPERTYPE

Observation: CVAE can improve semantic role disentanglement.




Zhang, Y., Carvalho, D. S., Pratt-Hartmann, |., & Freitas, A.
LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent Sentence Spaces.
arXiv:2312.13208 (2023).

Background: investigating CVAE where the condition is word embedding, with the help of normalizing flow,
we can now generate definition text condition on word embedding in definition modelling task[1].

Trackl: Definition Modelling Track2: Reversed Dictionary
l Track1: Definition Modelling :> Model | WordEmbed INN loss] Sense-BLEU MoverScore MSE (INN loss)] Cosine Ranking]
Publised in (Mickus et al., 2022)
7N\ Electra - 0.0315 0.0673 1.4128 0.8428 0.4989
ord Embedding INN  <—> Z —> LlaMa(7B) — definition text baselines Char - 0.0263 0.0453 0.1477 0.7900 0.5021
) 4 SGNS - 0.0304 0.0830 0.9109 0.1513  0.4903
<: T Evaluating Invertible CVAE framework
Electra | 165.7715 0.0269 0.5430 1.2024 0.8464 0.4355
Track2: Reversed NESpasy ot Char | 1786500 00249 05349 01376 0.8046 0.4369
Dictionary ' SGNS 171.0692 0.0255 0.5425 0.9467 0.3010 0.2235
definition text Optimus Electra | 242.6433 0.0089 0.5042 3.4214 0.0090 0.4883
Flow(tr) Char 258.6515 0.0173 0.5185 0.4661 0.0062 0.5140
SGNS 249.5961 0.0150 0.5161 1.1690 0.0009 0.5001

Normalising flows can plug-in into pretrained VAEs to conditionally control text generation.

[1] Timothee Mickus, Kees Van Deemter, Mathieu Constant, and Denis Paperno. 2022. Semeval-2022 task 1: CODWOE - comparing dictionaries and word embeddings. In Proceedings of the
16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1-14, Seattle, United States. Association for Computational Linguistics.



Zhang, Y., Carvalho, D. S, Pratt-Hartmann, |., & Freitas, A.
Towards controllable natural language inference through lexical inference types.
under review (2024).

Motivation & Question: Can natural language inference process be controlled via

labels?
Question: in which way are evaporation and condensation are similar?
Answer: both are caused by phase changes in heat energy
. eval q H a
Target: we focus on syllogistic-style deductive ["C;used ph bl st ol be]
inference (2 premises, 1 conclusion) to explore | ARG insertion:
og e In
the controllability of explanatory NLI. /\
v
Contribution° is a measure ating and condensing can be =
. * of caused by
(1) Framing the expl. NLI model as a latent Erame substilution;

. " phase changes to
variable model. evaporating and
condensmg

. . . .. can evaporating and condensing | =
(2) Ling./inf. priors can help model training, ,-[ cause phase changes ] [arebothphasechanges}
inference, and delivering inference control.

Frame-CONJ:
evaporating and =4
condensing

evaporating is a kind of | | condensing is a kind of
- phase change phase change

[1] Dalvi, B., Jansen, P., Tafjord, O., Xie, Z., Smith, H., Pipatanangkura, L., & Clark, P. (2021). Explaining answers with entailment trees. arXiv preprint arXiv:2104.08661.




Methodology

Annotation: For each inference pair in
EntailmentBank, we annotate it via Abstract
Meaning Representation (AMR) graph. The
total number of annotation is around 5000.

Original type AMR type

Prop.

Example entailment relation

ARG substitution

P1: a scar on the knee is a kind of scar

(ARG-SUB) 19% P2: ascaris an acquir'ed charac?eristic o
C: a scar on the knee is an acquired characteristic
o PRED substitution Plf food cor}tams nutr‘lents and energy for living @ngs
Substitution (PRED-SUB) 5% P2: to contain something can mean to store something
C: food stores nutrients and energy for living things
o P1: the formation of diamonds requires intense pressure
Frame substitution 20% P2: th .. deen bel arth °
(FRAME-SUB) (4 : the presst.lre 18 1n'tense eep below e s crust
C: the formation of diamonds occurs deep below the crust
of the earth
Conditional frame P1: if something is renewable then that something is not
Inference from Rule  insertion/substitution 12% a fossil
(COND-FRAME) P2: fuel wood is a renewable resource
C: wood is not a fossil fuel
ARG insertion Plf solar energy comes from the sun
(ARG-INS) 18% P2: solar energy is a kind of energy
P3: solar energy is a kind of energy that comes from the
Further Specification sun .
. . . . P1: photosynthesis stores energy
or Conjunction Frame conjunction S
6%  P2: respiration releases energy
(FRAME-CONJ) : : g
C: photosynthesis stores energy and respiration releases
energy
Infer Class ARG/PRED P1: rock is a hard material
from Properties generalisation 1% P2: granite is a hard material
(ARG/PRED-GEN) C: granite is a kind of rock
ARG substitution P1: blacktop is made of asphalt concrete
Property Inheritance ~ (Property Inheritance) (.4% P2: asphalt has a smooth surface
(ARG-SUB-PROP) C: a blacktop has a smooth surface
a shelter can be used for living in by raccoons
Example (EXAMPLE) 0.9% some raccoons live in hollow logs
an example of a shelter is a raccon living in a hollow log
an optical telescope requires visible light for human to
Unknown If ... then ... (IFT)  0.8% use
clouds / dusts block visible light
if there is clouds or dusts, then the optical telescope can-
not be used
spiral is a kind of shape
Others (UNK) 16% galaxies can be classified by shape

spiral galaxy is a type of galaxy




ARG-SUB

P1: a scar on the knee is a kind of scar

Py :mod

4 N
/
I s/scar | )
\ ;~domain
\ v

N -

:location

c/characteristic-02

C: a scar on the knee is an acquired characteristic

:location

c/characteristic-02 :ARG1-of

a/acquire-01

COND-FRAME

P1: inventing paper allows paper to be used

p/paper

o ~ :ARGO

\ ' :ARG1 - 2

:ARG1

p2/paper

P2: if something is allowed to be used then the use of that
something might increase

iifincrease-01

=

’,

o W ARGl [ :
\ u2/use-01 |
 a/allow-01 \ '

~ / \

\ ’
\ / ~ -

iifincrease-01




Methodology

Latent variable NLI model: (1) frame the NLI model, such as T5, as a latent variable model. For the conditional
case, the label and z are dependent.

po(2|!)

Z
(i.e., latent
space)

L
(i.e., inference

type)

Z
(i.e., latent
space)

dependency

X

(ie., sample | pg ( T ’ Z)
space)

X
(i.e., sample
space)

po(x|z,1)

Latent NLI model Conditional Latent NLI model



Methodology

Latent variable NLI model: (1) frame the NLI model, such as T5, as a latent variable model.

As implemented in the architecture.
c: blacktop has smooth surface

t

[ linear ]

-------------- (4) sentence T5 (Google)----------->» {9

(2) non-cross- (1) add to output
attention 5, [token [~="77777T"" - 4 ™~

i :
-------- | D

(1) input of éro:ss attention

~ p

Encoder

token f----------- Bl B s e e '

(1)cross- [, @KV

o : ’
I ;-9 attention |V [T T >€
0 bottleneck \ H

input

EmbeddinJ input
Embeddin

TYPE: ARG/PRED-GEN

P1: blacktop is made of asphalt

IP2: asphalt has smooth surface I I I
[ | [ |
Stage 1: sentence embedding Stage 2: decoder connection




Empirical analysis

Can inf. types control inference behaviour? For encoder input, given premises, changing the [type].

P1: blacktop is made of asphalt concrete

P2: asphalt has a

ARG-SUB: the blacktop is made of

ARG-SUB-PROP: blacktop has a

ARG/PRED-GEN: a blacktop is a kind of

asphalt

ARG-INS: asphalt concrete blacktop has a

FRAME-CON: asphalt and blacktop have the

same surface
IFT: if the asphalt has a
the blacktop will have a

then

Premises Inference Type Original T5
P1: a pumpkin contains ARG-INS a fruit in a pumpkin contains seeds
seeds
P2: fruit contains seeds FRAME-CONJ a pumpkin and fruit both contain seeds
IFT if a pumpkin contains fruit then the fruit may contain
seeds
EXAMPLE fruit is an example of pumpkins being sown
ARG/PRED-GEN a pumpkin is a kind of fruit
ARG-SUB fruit can contain pumpkin seeds
UNK a pumpkin can contain seeds
FRAME-SUB fruit is a kind of pumpkin
P1: sunlight is a kind of so- ARG-INS solar energy is a kind of resource for plants that uses wa-
lar energy ter
P2: water and sunlight are FRAME-CONJ water and sunlight are resources for plants and are kinds
resources for plants of solar energy
UNK the resources for plants include water and solar energy
ARG-SUB water and solar energy are resources for plants
P1: to move something can ARG-SUB flowing can mean to transfer energy
mean to transfer something
P2: flowing is a kind of INF if something flows, then that energy will flow
movement for energy
FRAME-CONJ moving can transfer energy and mean flowing
ARG-INS flowing can be a kind of transfer of energy to another

ARG/PRED-GEN

entity
transferring energy with flowing can be seen as transfer-
ring energy

Inf. type can control the generation of conclusion,
indicating the inference behaviour is encoded in the label embedding.



Baseline  INJ BLEU Cosine BLEURT Loss | PPL |

Transformer: baselines without bottleneck

Empirical anaIySiS TS DE 055 096 0.30 053 144

original DP 059 096 034 058 157
(smal) EP 0.65 097 045 052 141
NO 054 096 022 069 222

TS DE 046 096 0.23 049 1.33
original DP 0.53 0.96 0.25 051 1.38

Can annotation help model training and inference? (base)  EP 061057039 048 122

DE 044 094 0.03 0.55 1.49

1.The inference type as the prefix for the premises at the Encoder 89 B 03 ose o3 o8 139
(Encoder Prefix): NO 054 096 017 063 171
B o o5 DE 060 097 046 040 14

original DP 0.64 0.97 0.44 046 1.58

the inference type is [type] </s>p1 </s>p2 = EP 067 097 050 059 180
yp [yp ] p p (arge) NO 057 096 0.31 061 1.84

DE 0.01 0.73 -1.34 691 102

2.The inference type as the prefix for the conclusion in the FanTS  DP 001 073 134 700 154
1 . arge EP 021 0.87 -1.04 1.30 3.66
DeCOder (DeCOder Ereflx)' NO 020 0.87 -1.14 1.34 381
TS DE 0.60 0.96 0.44 0.68 1.97
; ; - DP 066 0.96 0.49 0.65 191
</s>the inference type s [type]- con (‘;';jg::,f) EP 070 097 057 051 166
NO 068 097 0.55 0.63 1.87

3.The inference type at the end of the conclusion in the Decoder CausalLM: baselines without bottieneck
DE 0.02 0.87 -1.15 073 2.07
(Decoder End): (wgs) DP 008 090 091 073 207

NO 0.07 090 -093 076 2.06

. . DE 020 0.88 -1.10 0.63 1.87
</s>con. the inference type is [type] GPT2  Dp 028 091 -090 060 182

(xD
NO 027 090 -097 068 197

sentence baselines with bottleneck

s DE 035 091 015 084 231
DP 039 091 -0.13 086 236
X EP 042 092 007 123 342

NO 035 091 -020 124 345

The annotations can support model training. DE 026 080 L1l 087 238
Optimus DP 025 0.79 -1.14 085 233

(BERT-GPT2) EP 0.09 0.74 -1.17 .11 3.03

NO 0.07 0.74 -1.20 1.13  3.09
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Pytorch library

Pythae: https://github.com/clementchadebec/benchmark VAE

Deep Generative Modelling: https://github.com/jmtomczak/intro_dgm

Available Models

Below is the list of the models currently implemented in the library.

Training
example

Models

Autoencoder (AE)
Variational Autoencoder (VAE)
Beta Variational Autoencoder (BetaVAE)
VAE with Linear Normalizing Flows (VAE_LIinNF)
VAE with Inverse Autoregressive Flows (VAE_IAF) =

Disentangled Beta Variational Autoencoder
(DisentangledBetaVAE)

Disentangling by Factorising (FactorVAE)
Beta-TC-VAE (BetaTCVAE)
Importance Weighted Autoencoder (IWAE)
Multiply Importance Weighted Autoencoder (MIWAE) O Open in Colab
Partially Importance Weighted Autoencoder (PIWAE)

Combination Importance Weighted Autoencoder
(CIWAE)

€ Open in Colab

ZC Open in Colab

VAE with perceptual metric similarity (MSSSIM_VAE) CO_Open in Colab

Paper

link
link
link

link
link

link
link
link
link

link
link

link

Combination Importance Weighted Autoencoder
(CIWAE)

Official

Implementation Wasserstein Autoencoder (WAE)

Info Variational Autoencoder (INFOVAE_MMD)
VAMP Autoencoder (VAMP)
Hyperspherical VAE (SVAE)
link Poincaré Disk VAE (PoincareVAE)
Adversarial Autoencoder (Adversarial_AE)
Variational Autoencoder GAN (VAEGAN) &
Vector Quantized VAE (VQVAE)

link
@ Hamiltonian VAE (HVAE)
Regularized AE with L2 decoder param (RAE_L2)
Regularized AE with gradient penalty (RAE_GP)
Riemannian Hamiltonian VAE (RHVAE)

Hierarchical Residual Quantization (HRQVAE)

VAE with perceptual metric similarity (MSSSIM_VAE)

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

ZC Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

€ Open in Colab

link

link
link
link
link
link
link
link
link
link
link
link
link
link

link

link

link
link

link

link
link
link
link
link
link

link


https://github.com/clementchadebec/benchmark_VAE
https://github.com/jmtomczak/intro_dgm

Language VAE: Pytorch library

LangVAE: our demo can easily integrate different pretrained language models into VAE architecture.

Pretrained checkpoints:

https://huggingface.co/neuro-symbolic-ai

Train:
Only support Gaussian prior now.

https://github.com/neuro-symbolic-ai/LangVAE

Evaluation:

https://github.com/neuro-symbolic-ai/LangSpace

1. latent traversal;
2. interpolation,

3. arithmetic;

4. t-shne/UMAP/PCA;

5. disentanglement metrics.
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https://huggingface.co/neuro-symbolic-ai
https://github.com/neuro-symbolic-ai/LangVAE
https://github.com/neuro-symbolic-ai/LangSpace

LangVAE: Easy to train Language VAEs

LangVAE is a python library for agile experimentation with language VAEs.
Featuring:

Easy integration of encoder and decoder models available from HuggingFace.
Tokenisation facility for any model combination.

Modular architecture, facilitating customisation.

Easy upload of trained models to HuggingFace.



LangVAE: Easy to train Language VAEs

Basic training script: BERT-GPT2

dataset = [sent for sent in EntailmentBankDataSet()
if (sent.annotations["type"] == "answer" or
sent.annotations["type"].startswith("context"))]
eval_size = int(0.1 * len(dataset))

decoder = SentenceDecoder("gpt2", LATENT_SIZE, MAX_SENT LEN)

encoder = SentenceEncoder("bert-base-cased", LATENT_SIZE, decoder.tokenizer)
train_dataset = TokenizedDataSet(dataset[:-eval_size], decoder.tokenizer, decoder.max_len)
eval_dataset = TokenizedDataSet(dataset[-eval_size:], decoder.tokenizer, decoder.max_len)

model config = VAEConfig(...)
model = LangVAE(model_config, encoder, decoder)

training_config = CyclicalScheduleKLThresholdTrainerConfig(...)
pipeline = LanguageTrainingPipeline( =training_config, =model)
pipeline( =train_dataset, =eval_dataset)




LangVAE: Easy to train Language VAEs

SentenceDecoder: Encapsulates decoder model and latent injection strategies
(memory, embeddings).

Defines the tokenizer model for inputs

decoder = SentenceDecoder(model_path, latent_size, max_sent_len)

model path: the name/path of the HuggingFace model to be used. It will be
automatically loaded using the transformers library (e.g., “gpt2”).

latent_size: dimension of the VAE latent space (e.g., 64).

max_sent_len: maximum sentence length in tokens.




LangVAE: Easy to train Language VAEs

SentenceEncoder: Encapsulates encoder model and converts input tokens
from the decoder tokenizer, so only the decoder tokens are needed.

encoder = SentenceEncoder(model_path, latent_size, decoder.tokenizer)

model path: same as SentenceDecoder, but with an encoder model
(e.qg., “bert-base-cased”).

latent size: same as SentenceDecoder

decoder.tokenizer: tokenizer model from a SentenceDecoder instance.




LangVAE: Easy to train Language VAEs

TokenizedDatasets: tokenizes and batches input sentences, using an interface derived from pytorch datasets.
Accepts two formats:

® Simple list of strings.
® Instance of SentenceDataset from the saf datasets library.

Provides one-hot encoded sentence tensors LxV, where L is the sentence length and V is the decoder vocabulary size.

from saf datasets import WordNetFilteredDataSet

dataset = WordNetFilteredDataSet()

decoder = SentenceDecoder("gpt2", 32, 64)
tok_dataset = TokenizedDataSet(dataset, decoder.tokenizer, decoder.max_len)



https://github.com/neuro-symbolic-ai/saf_datasets.git
https://github.com/neuro-symbolic-ai/saf_datasets.git

LangVAE: Easy to train Language VAEs

Configuration and pipeline setup

model_config = VAEConfig(
=(dataset[0][ ].shape[-2], dataset[0][ ].shape[-1]),
=32

)

model = LangVAE(model_config, encoder, decoder)




LangVAE: Easy to train Language VAEs

Configuration and pipeline setup
training_config = CyclicalScheduleKLThresholdTrainerConfig(

pipeline = LanguageTrainingPipeline( =training_config, =model)




LangVAE: Easy to train Language VAEs

Starting the training process

pipeline(

=train_dataset,
=eval_dataset




LangVAE: Easy to train Language VAEs

Examples:
https://colab.research.gooqgle.com/drive/1CCFVvPWsQU2VX41quHGT2-uFgHogAe|Dv

Code:
https://qgithub.com/neuro-symbolic-ai/LangVAE



https://colab.research.google.com/drive/1CCFvPWsQU2VX41guHGT2-uFgHogAejDv
https://github.com/neuro-symbolic-ai/LangVAE

LangSpace: Easy to probe Language VAEs

LangSpace is a python library for quick testing and probing of language VAEs.

It features:
A collection of probing methods, adapted for language VAE models.
A modular architecture, for implementation of flexible and reusable probes.

Extensible reporting methods.



LangSpace: Easy to probe Language VAEs

Loading models

from langvae import LangVAE

model = LangVAE.load_from_hf _hub(models.OPTIMUS ENTAILMENTBANK,




LangSpace: Easy to probe Language VAEs

Loading datasets

from saf _datasets import EntailmentBankDataSet

eb_dataset =[sent for sent in EntailmentBankDataSet.from_resource("pos+lemma+ctag+dep+sri#noproof")
if (sent.annotations["type"] == "answer" or sent.annotations["type"].startswith("context"))]




LangSpace: Easy to probe Language VAEs

Quantitative probes: Interpolation

from langspace.probe import InterpolationProbe
from langspace.metrics.interpolation import InterpolationMetric as InterpMetric

eval_metrics = [InterpMetric. QUALITY, InterpMetric.SMOOTHNESS]

interp_report = InterpolationProbe(model, dataset, =eval_metrics).report()
(interp_report)

interp_report.to_csv("interpolation.csv")




LangSpace: Easy to probe Language VAEs

Quantitative probes: Interpolation

source target distance | generate
humans require water for survival
humans require animals require food to o . :
. : 1.000 animals require food for survival
freshwater for survival survive
animals require food to survive
the sunisinin solar hemisphere
.. food is a source of the sun is a source energy for called
the sunisinthe :
energy for animals / 0.380 plants

northern hemisphere

plants

food is a source of energy for animals /
plants




LangSpace: Easy to probe Language VAEs

Quantitative probes: Disentanglement metrics

from langspace.probe import DisentanglementProbe

gen_factors = {
"direction": ["ARGM-DIR"],
"cause": ["ARGM-CAU"],
"purpose": ["ARGM-PRP","ARGM-PNC", "ARGM-GOL"],
"more": ["ARGM-EXT"],
"location": ["ARGM-LOC"],

}

disentang_probe = DisentanglementProbe(model, dataset, ,
=["z-diff", "z-min-var", "Disentanglement", "Modularity"], =gen_factors)
disentang_report = disentang_probe.report()
(interp_report)
interp_report.to_csv(”disentanglement.csv")




LangSpace: Easy to probe Language VAEs

Quantitative probes: Disentanglement metrics

z-diff

Z-min-var

MIG

Completeness

Informativene
SS

0.05 (+0.00)

0.25 (0.00)

0.02 (x0.02)

1.00 (£0.00)

0.58 (£0.29)




LangSpace: Easy to probe Language VAEs

Qualitative probes: Traversal

from langspace.probe import TraversalProbe

trav_report = TraversalProbe(model, dataset,

(trav_report)
trav_report.to_csv( )




LangSpace: Easy to probe Language VAEs

Qualitative probes: Traversal

seeds dim distance generate

Earth revolves 0 0.079735 light revolves
around the sun. around the sun.
Earth revolves 0 0.249271 light revolves
around the sun. around the sun.
Earth revolves 0 0.457066 light revolves
around the sun. around the sun.
leois a kln_d of 31 1 574725 leois a k|n.d of
constellation constellation
leois a kln_d of 31 3739711 smoisa kl.nd of
constellation constellation
leo is a kind of 31 3 886802 chloro is a kind

constellation

of cell




LangSpace: Easy to probe Language VAEs

Qualitative probes: Vector arithmetic

from langspace.probe import ArithmeticProbe
from langspace.ops.arithmetic import ArithmeticOps

arith_report = ArithmeticProbe(model, dataset, =list(ArithmeticOps)).report()
(arith_report)
arith_report.to_csv("arithm.csv")




LangSpace: Easy to probe Language VAEs

Qualitative probes: Vector arithmetic

source target op generate
animals require food | animals require . . .
: : sum animals require food for survival
for survival warmth for survival
water vaporis X s
.. P the water is warm sum the water is invisible
invisible
animals require food | animals require cal 5 chain carbohydrate makes
i X sub i
for survival warmth for survival a kind of food
water vapor is X igneous is formed chemically in
... the water is warm sub ..
invisible crystallizing
animals require food | animals require . . .
. . avg animals require food for survival
for survival warmth for survival
water vaporis X s
P the water is warm avg the water is invisible

invisible




LangSpace: Easy to probe Language VAEs

Qualitative probes: Cluster visualisation

viz_list =[[" ".join([tok.surface for tok in sent.tokens]),
" "join([tok.annotations["srl_0"] for tok in sent.tokens])]
for sentin eb_dataset]

target_role =['ARGO : animal|, 'ARGO : water’, 'ARGO : plant, 'ARGO : something']
target_viz_list = ClusterVisualizationProbe.role_content_viz(viz_list, target_role, =

cluster_viz_report = ClusterVisualizationProbe(model, target_viz_list, =sample_size,
=[CvM.TSNE]).report()




LangSpace: Easy to probe Language VAEs

Qualitative probes: Cluster visualisation

TSNE Projection of 1000 Documents Principal Component Plot
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LangSpace: Easy to probe Language VAEs

Examples:

https://colab.research.gooqgle.com/drive/18Jath7a3 hn2uWyait9p3hOperphSo4S

Code: https://github.com/neuro-symbolic-ai/LangSpace



https://colab.research.google.com/drive/18Jath7q3_hn2uWyait9p3hOperphSo4S
https://github.com/neuro-symbolic-ai/LangSpace
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Zhang, Y., Carvalho, D. S., Freitas, A. Learning disentangled semantic spaces of
explanations via invertible neural networks. ACL 2024.

Instead: General semantic control and improve the localisation of latent sentence spaces, which can
shorten the gap between deep latent semantics and formal linguistic representations.

Distributional Space(Optimus)

4 ARG1-f . 1
[ ot P S N ire .
ARG ARGO- e'
\ \\ ﬁh_v'-eafx = ,/’ j
localised/formal

semantic control (Optimus)

Interpolation path:

animals require oxygen for survival
1. animals require oxygen to survival
2. producer lives in an environment
3. human needs water and oxygen

9. animals eat food for survival
animals require food for survival

VS

Disentangled Space(ours)

-—————
/‘ £
~

" ARG1-food - <7 " T~

ARG1-'I ABGO- require |
livingthing ~Animals / /.
. V-eat --i-""7--""

\ A ’

« ARG1-oxygen .,

7’

S
K T o B -//

localised/formal
semantic control (Ours)

Interpolation path:

animals require oxygen for survival
1. animals require oxygen to survival
2. animals require water

3. animals require water and oxygen

9. animals require food for survival
animals require food for survival

our objective: Granular semantic sentence control and manipulation

Contributions:

1. New notions on sentence semantic disentanglement from
the perspective of “argument structure theory (AST)”.

2. Flow-based INN into AutoEncoder to control sentence
generation.

3. Supervised approach to flow-based INN to learn a higher
separation and disentanglement of semantic features.

4. Geometrical data augmentation.



Zhang, Y., Carvalho, D. S., Freitas, A. Learning disentangled semantic spaces of
explanations via invertible neural networks. ACL 2024.

Overview: Most previous work have concentrated on disentangling “task-specific” generative factors, such as
sentiment, within the context of style transfer.

Style-transfer Attribute Space

coarse-grained attribute control

sport + negative:
| hate basketball.

v

science + positive:
| love Physics and Chemistry.

their objective: sentence control for sentiment/topic transfer (Liu et al., 2023)

Instead: general semantic control and improve the localisation of latent sentence spaces, which can shorten
the gap between deep latent semantics and formal linguistic representations.




Methodology

Overview: We first encode each sentence with pretrained AutoEncoder. Then, train the flow-based

INN to learn a latent space with better semantic disentanglement (i.e., role-content separation).

Unsupervised: Maximize the exact log-likelihood:

Animals require
for survival

Lunssp = ~Eamp(o) [T(E(@))] -+ log [T'(B(2))

Supervised: for each role-content cluster, given the center

embedding and a variance < 1, the points around each \ 4
center will be more densely distributed. forward
V-req
24 INN | ARG1| ARGO-
9 livingthing, Animals
[T(E(il?)) _ :ucluster] | |

Lop=—F

I~Pcluster (x) 1 2

+ log ’T’(E(m))|

— 0

—>| Bert z— GPT2
*® *®

clustersuperwsedg

—

Inverse

INN  —:z

Animals require

for survival



Methodology

Data augmentation: Usinng the arithmetic and traversal operators to support data
augmentation for each role-content cluster, described as follows:

Role-content Augmented sentences

. . . plants use sunlight often to make food for themselves
( 1 ) given two sentence em beddin gs with same role- ARGO-plant plants produce light in the winter by photosynthesizing

content, calculate their average: giccplantsiconitain ( water ; food,)

plants take in oxygen from the air
a plant requires water in order to perform photosynthesis

/ / some plants grow organically

(1) V= a,’ue'ra,ge(E (ajz), E (ij)) plants use soil as a source of water
water is liquid by volume
ARG]1-water salt water is a kind of solution

water is two things together

(2) re-sample each dimension of resulting vector water is boiling in the pot
. . . water is an ( inexhaustible ; wasteable ) resource
(traversing its neighbours). water is an ( electrical ; electrical energy ) insulator

water is a part of soup
a hurricane is a kind of animal
— q ARG2-animal  abird is a kind of animal
S — aY) . .
(2) Vneighbour V[Z] N(Oa 1)Vz€{0,..,szze(v)} a sperm whale is a kind of animal
a wren is a kind of animal
a dog is a kind of native animal

(3) decode it and keep the sentence holding the same a chameleon is a kind of animal
making tools requires using sharp tools
role-content. PRED-require  plants require resources to provide food for themselves

a system requires electrical energy to operate
crops require specialized environments to grow
3 _ D/ cooking requires food from human food chain
( ) Lnew = (Vnez' ghbour ) producing an object requires chemical energy
living things require energy from the sun for survival
growth requires the production of more cells




Empirical analysis

Visualisation: evaluating semantic separability via t-SNE and PCA visualisers.

i
3333
(AR

Figure 3: ARGO: t-SNE plot, different colour represents Figure 4: PRED: t-SNE plot (blue: are, green: cause, vigure 20; ARGEsESNE POt (Blus:js o-o.d, green. oxy-

different content regions (blue: animal, green: human, red: is, purple: require). PCA plot is in Figure 13. gen, red: SHl Purple: water). Supew131on (right) -

red: plant, purple: something) (left: Optimus, middle: duces separability comparable with ARGO0. PCA plot is
S e - - provided in Figure 12.

X o Figure 13: PCA visualization for PRED. Figure 12: PCA visualization for ARGI.
Figure 11: PCA visualization for ARGO.

(Optimus) (Unsupervised) (Supervised)

Supervised (right) leads to better semantic separation than Optimus(left) and un-supervision (middle).



Empirical analysis

Interpolation localisation: Evaluate the disentanglement via linear interpolation.

Given two sentences with same semantic feature, a disentangled space should hold

the same feature during interpolation.

Interpolation Controllability

0.8

0.7

0.6

ratio

0.4

0.3

0.2

0.1

0.0

ARGO-anima

ARGO-human

PRED-require

B supervised INN
N vanllla Optimus
[ unsupervised INN

PRED-cause

Interpolation localisation: argument-animals and

source: animals require food to survive

1. animals require water to survive

2. animals require food for survival

3. animals require food for survival

4. animals require nutrients from food

5. an animal requires food for survival

6. an animal requires food for survival

7. an animal requires nutrients from producers
8. an animal requires nutrients for survival

9. an animal requires nutrients from food

10. an animal requires nutrients from producers

. animals need sunglasses for protection
. animals live in an environment

. animals need food to thrive

. animals require energy for survival

. only a producer eats plants
. a human produces its own food
. an animal requires nutrients in a source of food to survive
. an animal requires energy to perform photosynthesis
10. an animal requires nutrients to grow

1
2
3
4
5. a consumer uses some of the food that is available
6
U
8
9

target: an animal requires nutrients from producers

interpolation localisation: predicate-require l

source: humans require freshwater for survival

Optimus:

1. humans require water and food through fossil fuels
2. humans require water for survival

3. humans produce small amounts of consumer food
4. human has a positive impact on a plant’s survival
5. humans convert food into animal prey

6. humans make food for themselves by eating

7. animals require food for survival

8. animals require nutrients from the air

9. humans eat plants for food

10. animals require food for survival

Cluster-supervised INN:

1. humans require water for survival
2. nonhumans require water for survival
3. animals require water and food
4. animals require water to survive
5. animals require water to live

6. animals require food for survival
7. animals require food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food to survive

target: animals require food to survive

Observation: Supervised INN outperforms both in quantitative and qualitative evaluations.



Empirical analysis

interpolation localisation: predicate-require

Interpolation localisation: argument-animals and predicate-

source: animals require food to survive

1. animals require water to survive

2. animals require food for survival

3. animals require food for survival

4. animals require nutrients from food
3
6
7
8
9

an animal requires food for survival

. an animal requires food for survival

. an animal requires nutrients from producers
. an animal requires nutrients for survival

. an animal requires nutrients from food

10. an animal requires nutrients from producers

. animals need sunglasses for protection
. animals live in an environment
. animals need food to thrive

1

2
3

4. animals require energy for survival
5.
6
7
8
9

a consumer uses some of the food that is available

. only a producer eats plants

. @ human produces its own food

. an animal requires nutrients in a source of food to survive
. an animal requires energy to perform photosynthesis

10. an animal requires nutrients to grow

target: an animal requires nutrients from producers

source: humans require freshwater for survival

Optimus:

il

humans require water and food through fossil fuels

2. humans require water for survival

3. humans produce small amounts of consumer food
4. human has a positive impact on a plant’s survival
5. humans convert food into animal prey

6.
7
8
g

humans make food for themselves by eating

. animals require food for survival
. animals require nutrients from the air

humans eat plants for food

10. animals require food for survival

Cluster-supervised INN:

[y

. humans require water for survival
. nonhumans require water for survival
. animals require water and food

2
3
4. animals require water to survive
5.
6
7
8
9.

animals require water to live

. animals require food for survival
. animals require food for survival
. animals require food for survival

animals requ1re food for survival

10. animals require food to survive

target: animals require food to survive




Empirical analysis

Downstream classifiers: evaluate the role-content separation via non-parametric classifier: K-
neighbours (KNN) and parametric classifiers: Naive Bayes (NB) and Support Vector Machine (SVM).

ARGQ: disentanglement proxy metrics PRED: disentanglement proxy metrics (forward: )  ARG1: disentanglement proxy metrics (forward: T)
classifier train accuracy precision recall fl score classifier train accuracy precision recall fl score  classifier train accuracy precision recall fl score
O 0.972 0973 0.972 0.972 0] 0911 0.914 0910 00911 @) 0.934 0.934 0933 0.933
KNN U 0.938 0.938 0.938 0.938 KNN U 0.869 0.873 0.865 0.868 KNN U 0914 0.914 0914 0913
C 0.979 0.979 0979 0.979 C 0.922 0.927 0918 0.922 C 0.954 0954 0954 0.954
0] 0.934 0.934 0.933 0.933 0) 0.865 0.866 0.866 0.865 (0] 0.904 0910 0902 0.904
NB U 0.958 0.958 0.958 0.958 NB U 0.873 0.874 0.871 0.872 NB U 0922 0.922 0922 0.922
C 0.978 0.978 0.978 0.978 C 0.903 0.903 0.902 0.903 C 0957 0.957 0.957 0.957
0] 0.970 0.970 0.970 0.970 0] 0.902 0.902 0.903 0.902 O 0951 0.951 0951 0.950
SVM U 0.972 0972 0972 0.972 SVM U 0.905 0.906 0.902 0.904 SVM U 0.953 0.953 0952 0.953
C 0.980 0.980 0.980 0.980 C 0.910 0912 0.909 0.910 C 095 0.959 0.959 0.959
Observation: Animal: disentanglement metrics (fI score)
(1) supervised (C) outperforms both unsupervised(U) and Optimus(O). train KNN NB SVM
(2) (U) outperforms (O) in NB and SVM (encoder + flow can improve the O 0.960 0.928 0.946
U 0.958 0.930 0.947

representation capabilities of approximated posterior). C 0967 0937 0.950
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Discretisation: 1. Vector Quantisation

Vector quantisation(VQ): vector quantisation aims to maps k-dimensional input vectors X in the
vector space R¥into a finite set of vectors Y={y:i=1, 2, ..., N}. Each vector y;is called a code vector

and the set of all the code vectors is called a codebook.

To select y; from codebook to represent xi, we can use L2 distance (like k-mean).

Codebook initialisation: it can be randomly initialised from a
distribution (Normal, uniform). More initialisations:

https://www.mgasem.net/vectorquantization/vg.html

i

Codewords

self._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)
self._embedding.weight.data.normal_()

Voronoi

Region

Measurement the performance of VQ: using mean square error (MSE).

\
-

Vectors


https://www.mqasem.net/vectorquantization/vq.html
https://en.wikipedia.org/wiki/Voronoi_diagram
https://www.mqasem.net/vectorquantization/vq.html

Discretisation: 2. VQ-VAE

VQ-VAE: it [1] first encode a text into token embeddings. Then, selecting the nearest codebook vector
as the input of decoder.

- ) 2
(2) Optimize codebook:||sg[z.(x)] — e|| > Torward \
4 Codebook ) <€——: backward
2 : stop gradient sgf]
Bl|ze(z) — sglell| |
............. N COpy gfadienf
(3) Optimize encoder under J/
the constraint of codebook: €o|€1|€2]| ,,, |[€K
\_ J
>(2"0 (zseg o 4
r —> Encoder Z() .oe zseq (,z u.e3 deCOder > T
(1) Optimize Encoder and Decoder: copy the gradient of egz”), e éz”‘”’) o optimize Encoder.
L J . J
Y Y
Encoding decoding

L =log p(z|z4(x)) + |Isglze(x)] — €||5 + Bllze(z) — sgle]||3

[1] Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation learning. Advances in neural information processing systems, 30.



Zhang, Y., Carvalho, D. S., Valentino, M., Pratt-Hartmann, I., & Freitas, A. Improving Semantic
Control in Discrete Latent Spaces with Transformer Quantized Variational Autoencoders.
EACL Findings 2024.

Overview: integrating T5 with vector quantisation, named T5VQVAE, to alleviate information bottleneck
of posterior for enhancing semantic control.

Explanatory sentences

Language modelling & Inference tasks:  gauation Metrics  BLEU BLEURT Cosine Loss | PPL |

DAE(768) 0.74 0.03 091 1.63 5.10 Natural Language Inference (EntailmentBank)
AAE(768) 035 -095 080 335 2850  Evaluation Metrics BLEU Cosine BLEURT Loss | PPL |
LAAE(768) 026 -107 078 371 4085  T5(small) 054 096 022 069 1.99
Data: DAAE(768) 022 -126 076 400 5459  T5(base) 057 096 033 0.61 1.84
B-VAE(768) 006 -1.14 077 3.69 4004  Bart(base) 0.54 096 0.17 063 187
* Explanations and mathematical “Optimus(32,rand) ~ ~ 054 ~ 0.14 ~ ~ 092" "1.08 294 = FlanT5(small) 022 089 -1.33 099 2.69
i Optimus(32, pre) 061 029 093 086 236 FlanT5(base) 032 089 -031 095 258
expressions. Optimus(768, rand)  0.49  -0.04 090 132 3.74 ‘T5bottleneck(base) 0.35 091 -020 124 345
Optimus(768, pre) 0.68 0.48 095 065 191 Optimus(32) 0.07~ 074 ~ 120 ~ 113~ 231
DELLA(32, rand) 071 0.06 092 050 1.65 Optimus(768) 008 074 -121 082 227
. DELLA(768,rand) 072 0.1 095 041 151 DELLA(32) 008 085 -1.23 169 541
Evaluation: TSVQVAE(small, soft) 0.81  0.62 097 046 158 DELLA(768) 009 087 -1.09 154 466
. . T5VQVAE(base, soft) 0.82  0.62 097 075 211 T5SVQVAE(small) 0.11 0.73 -1.23 0.85 233
* BLEU for math modellin g an d inference Mathematical expressions T5VQVAE(base) 0.46 0.94 0.10 0.84 231
; Evaluation Datasets ~ EVAL VAR EASY EQ LEN Mathematical Expression Derivation
with four OOD testsets. DAETSD 094050 080 078 058 Eualuston Dataseis EVAL SWAP FASY EQ _ LEN
i : : : : : T5(small 069 048 057 060 0.63
* BLEU, BLEURT, Cosine, Loss, PPL for L ‘23%8223 041 0as 03 03 0 ngbase)) 0o 0f e 050 O
. : : : : : Optimus(32) 0.72~ 030 ~ 0.59 023~ 040
explanations BVAECSS) 039 048 037 039 050  orimiceyy 079 036 063 029 044
Optimus(32, rand) 095 ~ 0.59 075~ 071 ~ 050 DELLA(32) 012 016 013 013 013
Optimus(768, rand) 0.96 0.61 0.79 0.75 0.54 DELLA(768) 0.13 0.18 0.12 0.13 0.14

DELLA@32,rand) 100 055 089 072 063  75yQVAEGsmall) 075 057 077 048 050

, T5SVQVAE(small, soft) 097 0.65 095 090 0.69
TSVQVAE outperforms Optimus on both tasks. T5VQVAE(base, soft) 0.98  0.62 095 085 068

Table 1: AutoEncoding task evaluation on the test set



Empirical analysis

Geometrical evaluation: evaluate controllability of latent space via Traversal,
arithmetic, and interpolation.

Traversal: given an input, re-sampling each dimension.

an animal requires warmth in cold environments

dim0: an animal requires warmth in cold environments dim4: an animal requires warmth during cold tempera-
dim0: a animal requires warmth in cold environments tures
dimO: the animal requires warmth in cold environments dim4: an animal requires warmth in cold environments

dim4: an animal requires warmth to cold environments
dim1: an organism requires warmth in cold environments
diml: an animal requires warmth in cold environments dim$5: an animal requires warmth in temperatures
dim1: an object requires warmth in cold environments dim5: an animal requires warmth in warm environments
dimS5: an animal requires warmth in a warm environment
dim2: an animal needs warmth in cold environments
dim?2: an animal must find warmth in cold environments dim6: an animal requires warmth in cold temperatures
dim?2: an animal brings warmth in cold environments dim6: an animal requires warmth in cold climates
dim2: an animal wants warmth in cold environments dim6: an animal requires warmth in cold systems

Table 3: TSVQVAE(base): traversals showing controlled semantic concepts in explanations. We also provide the
traversal of Optimus latent space for comparison in Table 13.

Arithmetic:

s4: animals are likely to have the same color as
their environment

sp: animals require respiration to survive / use
energy

T5VQVAE: animals are likely to survive / to survive
in their environment

Optimus: animals have evolved from animals with
traits that have an animal instinct

Table 6: Latent arithmetic s4 + sg for TSVQVAE(base)
and Optimus(32). blue, orange, and shallow blue in-
dicate the semantic information from both s4 and spg,
from s4 only, from sg only, respectively.



Empirical analysis

Interpolation: interpolating over discrete space (i.e., codebook).

For each token, calculate the weighted minimal intermediate token between its
preceding token and the target token.

2V = e 2% = eF2 where i =[1,..., L]
2z = 2* where
k = argmin; (1—1t) x ”szo_l = zj”2
+tx |2y =2,

g = 259 . 32 7]

Interpolation smoothness: calculating the ratio between ideal semantic
distance (i.e., aligned distance between source and target) and actual
distance (i.e., sum of alighed semantic distances between each pair of
adjacent sentences in the path).

d(align(so, sT)) (5 : sentence semantic distance
Z?:o d(align(s¢, st+0.1))

IS = IE(SQ,...,ST)NP

align : sentence feature alignment

Observation: T5VQVAE leads to smoother interpolation path.

Source: some birds have a speckled brown color

1. some birds have a speckled brown color

2. some birds do not have speckled brown feathers
3. some species mammals do not have speckled
wings

4. most species mammals do not have wings

1. some birds have scales
2. some birds have a speckled brown color
3. some species mammals have wings
4. most birds don’t have wings
5%
6.

most insects have wings
most species mammals don’t have wings

Target: most species mammals do not have wings

Table 4: Interpolation for TSVQVAE (top) and Optimus
(bottom) where blue, underline, and orange represent
subject, verb, and object, respectively. Only unique
sentences are shown.

Evaluation Metrics avg IS max IS min IS
Optimus(32, pretrain) 0.22 0.53  0.13
Optimus(768, pretrain) 0.21 0.50 0.10
T5VQVAE(base, soft) 0.65 1.00 0.18

Table 5: Interpolation smoothness.
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Related work

Disentangling Generative Factors in Natural Language with Discrete
Variational Autoencoders

Generative Factors
Tense: Present
Subj-num: Singular
Person-num: 3rd
Obj-num: Singular
Gender: Male
Verb-obj: cook-egg
Negation: Affirmative
Verb-style: Infinitive
Sent-type: Declarative

N

Qe cooks the egg

Training
£ = Ep(g)[log p(z|)]
—KLg(z|z)||p(2)

KL Decomposition:
I(z, z)

+Y KL(q(2)|1p(2))
+ Controlled

Total Correlation

\/’ e Avoid KL collapse

Giangiacomo Mercatali *

University of Manchester

Gumbel
Softmax Discrete
Distributions Samples

g ==
1

Quantitative
Metrics
Disentanglement:

MIG
Z-diff

Z-min-var

André Freitas |

Idiap Research Institute
University of Manchester

1=l

7n (Tense)
-2, 0, 2

e Aid Disentanglement

Qualitative
Metric
Traversal of Tense:

He cooks the egg
He cooked the egg
He |will cook the egg

Factor Dimensions | Values

Verb/object 1100 [Verb/obj variations]
Gender 2 [Male, Female]

Negation 2 [Affirmative, Negative]
Tense 3 [Present, Future, Past]
Subject number | 2 [Singular, plural]

Object number | 2 [Singular, plural]

Sentence Type | 2 [Interrogative, Declarative]
Person number | 3 [1st, 2nd, 3rd person]

Verb style 2 [Gerund, Infinitive]




Syntactic & structural controls



Graph Neural Networks

Graph neural network: learns a function of signals/features on a graph G=(V,E) which
takes as input: (1) node embedding (i.e., V) and (2) adjacency matrix (i.e., E).

E.g., given a GNN with L layers, the [-th layer can then be written as:

Hidden layer Hidden layer
1 ) / \
H(H—l) — l Hl A A A
f ( Y ) ..( o .‘( [
"g o—® \ o—®
HY :initial node embeddings. - 3
Input . ' » Output
. ] s . o o -
A :adjacency matrix. . | e | e | rew .
® e . ® - "F‘ ¥ —b@—» 3 ‘.\\‘ = —»@»—» el ¢
Q ® o ® [e] o a
- ° J L ‘
Distinct models differ only in how f(-,:) is chosen and L 0\ * L °\ =
parameterised. . - . =%

source: https://tkipf.github.io/graph-convolutional-networks/



https://tkipf.github.io/graph-convolutional-networks/

Graph Neural Networks

Graph Convolutional Network: (1) 0 110 0
100 1 1

100 0 0

HW) = fY(H' A) = c((AH'WY) Oe 0100 0
0100 0

OROMO 001 00

graph Adjacency

Two limitations:

1. Multiplication with A means that, for every node, we sum up all the feature vectors of all neighboring nodes but not
the node itself. We can "fix" this by enforcing self-loops in the graph: simply add the identity matrixto A.orD-A(L=D - A,

L is Combinatorial Laplacian).

2. The second major limitation is that A is typically not normalised and therefore the multiplication with A will completely
change the scale of the feature vectors. E.g, some nodes have more connections. We can solve it by multiplying D*{-1}

where D is the diagonal node degree matrix.

HH) = fY(H', A) = o(D"2(D — A)D T H'W)

\ .

-~

I,sym points on both sides of an edge.

Symmetric normalised Laplacian

OO = OO

D D=1

SO OO o N

OO OO WwWOo

S o N OO

0

Degree

o= O O O

0

o O O O O

-0 O O O O

multiplying the left and right by the square root of the degrees
of nodes i and j respectively is to consider the degrees of the




Graph Neural Networks

Pytorch framework:

Lo

o PyTorch Geometric(PyG): https://pytorch-geometric.readthedocs.io/en/latest/
-7

class GCNEncoder(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super (G6CNEncoder, self).__init__()
self.encoder = nn.ModuleList()
self.encoder.append(6CNConv(in_channels=int(in_channels),out_channels=int(out_channels), dropout=0.5))
self.num_layers = hidden_channels
# hidden 10ger‘5|
for 1 in range(1, self.num_layers):
self.encoder.append(6CNConv(in_channels=int(in_channels), out_channels=int(out_channels), dropout=0.5))
self.gcn_shared = GCNConv(in_channels=int(in_channels),out_channels=int(in_channels))
self.gcn_mu = GCNConv(in_channels=int(in_channels),out_channels=int(out_channels))
self.gcn_logvar = G6CNConv(in_channels=int(in_channels),out_channels=int(out_channels))

def forward(self, edge_emb_eql, edge_index):
for 1 in range(self.num_layers):
edge_emb_eql = self.encoder[1](edge_emb_eql, edge_index)

X = F.relu(self.gcn_shared(edge_emb_eql, edge_index))
mu = self.gen_mu(x, edge_index)

logvar = self.gcn_logvar(x, edge_index)

return mu, logvar


https://pytorch-geometric.readthedocs.io/en/latest/

Zhang, Y., Valentino, M., Carvalho, D. S., Pratt-Hartmann, |., & Freitas, A.
Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational AutoEncoders.
NAACL Findings 2024.

Motivation: Syntactic injection of language models.
Syntactic injection of language models via low-dimensional latent Gaussian space

with graph neural networks.

What’s the relation between syntax and semantics in this work? semantics: word
content + order (i.e, word order typology); syntax: constituency tree - word content.

How to get the syntactic tree? constituency tree parser.

[1] Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro, Milo$§ Stanojevié, Phil Blunsom, and Chris Dyer. 2022. Transformer Grammars: Augmenting Transformer Language Models with Syntactic
Inductive Biases at Scale. Transactions of the Association for Computational Linguistics, 10:1423-1439.

[2] Xiang Hu, Qingyang Zhu, Kewei Tu, Wei Wu, "Augmenting transformers with recursively composed multi-grained representations". In the Twelfth International Conference on Learning
Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.
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https://aclanthology.org/2022.tacl-1.81
https://faculty.sist.shanghaitech.edu.cn/faculty/tukw/iclr24.pdf

Methodology:
Q1. How to efficiently encode syntax in latent spaces?

. . . Add(Symbol, Mul(Integer, Symbol)) B
Encoding syntax in latent space: we first propose four 1 P

. . . LSTMe— _ o @ () —GCN— z —>2"Tz— A
encoding strategies to evaluate their capabilities to represent =" 9. Ghiisncon 4 —

. . . > lin
syntactic information. o wen | N~ P i dvercence
x-y BERT<V GPT2—>x-y g

x-y —>»BERT
A _—~ Wsem

Single encoder with multi-task learning: A

(1) LSTM: jointly train with LSTM decoder. | Optimus(STV) Optimus(VGAE) |

Single Encoder with multi-task learning

h AL divergence o KLd vergence
Add(Symbol, ) e
o | mﬁ e

(2) VGAE: jointly train with Graph VAE.

Dual encoders with architectural constraints: S
shared Weights _»F;PTZ —>x-y :.GPTZ —>x-y
(3) Siam: two bert encoders, one with flatten syntax. @ "
X-y —> BERI_—Wsem{ X-y —> BER'I:‘—Wsem{
(4) GraphEncoder: graph and language encoders. h
L Optimus(Siam) Optimus(GraphEncoder) J

Targeted injected space: Optimus.

Dual Encoders with architecture constraint



Syntactic representation evaluation: quantitatively evaluating syntax space, including:

Empirical analysis

(1) latent space geometry: sentences with the same/different features are clustered/separated in the latent

space. In this case, we can evaluate the organisation of the latent space via MSE of k-mean, denoted by

MSE(sem/syn).
(2) tree depth: we train a linear classifier to predict tree depth.
(3) semantic-syntax separation: Mutual Information, KL divergence, and Wasserstein distance.

Corpus Mathematical expression Explanatory sentences
Proxy metrics =~ MSE(sem)] MSE(syn)] AcCgep(syn)T AccCgep(sem)] MSE(sem)] MSE(syn)] AcCgep(syn)T Accgep(sem)]  Flgep(sem)]
LSTM 079.02 070.48 000.74 000.74 176.39 158.03 000.40 000.40 000.41
VGAE 125.68 434.52 000.81 000.82 169.42 110.30 000.40 000.38 000.45
Siam 191.97 053.90 000.85 000.52 074.86 031.95 000.43 000.35 000.42
GraphEncoder - - - - - - - - -
+ GCN 004.31 065.79 000.72 000.27 069.77 091.94 000.49 000.12 000.30
+ GraphSAGE 208.21 053.20 000.98 000.52 058.12 004.10 000.50 000.39 000.46
+ TransConv 249.00 038.30 000.98 000.57 058.10 003.35 000.51 000.38 000.47
F1 ;ep (sem)) Flgep(syn)T Ml(sem,syn)] KL(semllsyn)t Wass(sem,syn)t | Flg.,(syn)T Ml(sem,syn)] KL(semllsyn) Wass(sem,syn)t

000.71 000.70 004.88 005.74 000.53 000.43 004.87 001.01 000.78

000.84 000.84 004.85 026.12 000.32 000.44 004.66 007.04 000.90

000.41 000.87 004.85 011.95 000.69 000.44 004.96 008.72 000.80

000.24 000.79 004.82 024.05 000.72 000.54 004.78 011.77 000.30

000.42 000.98 005.04 005.12 000.69 000.44 004.45 043.45 001.92

000.52 000.98 004.80 031.63 001.19 000.48 003.54 012.78 000.75




Empirical analysis

Visualisation of syntax space: evaluating cluster and separation of syntax space via t-SNE. If the latent space
can encode the clear syntax feature, we should see clear syntax cluster and separation.

.‘ >
E}‘ g

D <, 2 L 3
el i / kP o ; ".qﬁ"" .
(+) S, K ; Wowr W ¥ Q\ : A : .
y , = 2R ¥ e »
— ){ layer 11 ] 3 & 5 H & gy : .
e = v X
@ () —| Sreen

Encoder |

0 e = " layer 6 ] o
o A
graph E: synta

tl layer 5 ] 4 {,_ . —

Language
Encoder

. oo | 22 Gy e é ¥,
— ayer B = R =
\:I 0 / : ’:k - (s . L = 4 v
__________ - = e, - : s
' ﬁw NEINY . 1 b % = ki .
@sm " ol = t — \ h .
cos ‘ x-y "‘ b oo > » ‘,
e »
________ ., Yy
@ -
Observation: graph-language encoders can better represent
Syntax information and Seman“c-syntax sepa ration. (top: LSTM, VGAE, Siam, bottom: graph encoders with GraphSAGE, GCN,

TransformerCONV).



Empirical analysis

Decoding problem: decoding under heterogeneous spaces (graph-language encoders) leads to worse
language modelling performance (lines 05 vs 09-17) because of distinct latent space geometries from

syntax and semantic spaces.

A
Zsemantic ---------------- Xobservation
"‘-.. T : animal requires food for survival
"-.._ O 2 (S (NP (NN)) (VP (VBZ) (NP (NP (NN)) (PP (IN) (NP (NN))))))
. V ’ o : animal requires food and water
i D A D £ (S (NP (NN)) (VP (VBZ) (NP (NN) (CC) (NN))))
N : Zsyntax A : flower needs sun and oxygen
- > 2 (S (NP (NN)) (VP (VBZ) (NP (NN) (CC) (NN)))

Corpus Mathematical expression Explanatory sentences
Metrics EVAL VAR-SWAP EASY EQ-CONV LEN BLEU BLEURT Cosine Loss| PPL|
sentence VAE baselines
01. AAE(768) 0.10 0.75 0.00 0.25 0.02 0.53 0.00 0.54 0.00 0.51 0.35 -0.95 0.80 3.35 28.50
02. LAAE(768) 0.00 0.43 0.00 0.25 0.00 0.27 0.00 0.29 0.00 0.44 0.26 -1.07 0.78 3.71 40.85
03. DAAE(768) 0.00 0.24 0.00 0.21 0.00 0.21 0.00 0.22 0.00 042 0.22 -1.26 0.76 4.00 54.59
04. B-VAE(768) 0.00 0.14 0.00 0.15 0.00 0.13 0.00 0.14 0.00 0.35 0.06 -1.14 0.77 3.69 40.04
05. Optimus(768)  0.99 0.99 0.00 0.38 0.81 0.93 0.00 0.81 0.14 0.76 0.35 -0.59 0.83 098 2.66
different encoding setups with memory injection

06. LSTM 1.00 1.00 0.00 035 0.73 0.94 0.00 0.77 0.06 0.74 0.41 -0.41 0.85 1.04 282
07. VGAE 098 0.99 0.00 034 0.72 0.93 0.00 0.74 0.04 0.71 0.26 -0.91 078 1.14 2.55
08. Siam 1.00 1.00 0.00 030 0.22 0.80 0.00 0.78 0.03 0.75 0.49 -0.15 0.88 094 2.55
GraphEncoder
09. + GCN 0.00 0.40 0.00 0.22 0.00 0.27 0.00 0.37 0.00 043 0.15 -1.19 075 124 345
10. + GraphSAGE 0.88 0.96 0.00 0.28 0.06 0.46 0.00 0.69 0.00 0.60 0.45 -0.28 0.87 1.00 2.71
11. + TransCONV  0.89 0.95 0.00 0.28 0.14 0.53 0.00 0.67 0.00 0.61 0.17 -1.16 075 121 3.35

*As for math expression, we evaluate it with BLEU on four Out-Of-Distribution test sets.



Methodology:
Q2. How to decode over heterogeneous spaces?

Decoding heterogeneous space: we inject distinct spaces into different spaces of decoder.

Optimus(mem): the latent space is injected into K and V.

Qlz; K|T

Attention(Q@, K, V') = softmax( v

)[2; V]

Ours: injecting semantic-syntax spaces into different decoder’s space. That is,
injecting syntax into Q and semantic into Kand V.

(Q X Zsyn)(K X Zsem)T
Vd

softmax ( WV ® Zsem)



Methodology:
Q2. how to decode over heterogeneous space?

Three injection operations: (1) addition, (2) mem, (3) tensor fusion[1]. For syntax injection: (1) and (3). For
semantic injection: (1), (2), and (3).

Finally, four combinations: addition Q + mem KV; addition QKV; fusion Q+mem KV; fusion QKV

,'l @ “, X-y RN TR, "
. O?%) A ' : E.g., semantic injection into Key

‘\\‘ “ee ”‘. Q‘e'y ‘ Kﬂ'y Value
(+) / T layer ]\ : | K T ¥
= — r : ®z ®z i -
Graph ) il gsoftmax((Q sm) sem) )(V ® zgem): | 1. addition + Key 2. memory Key
(?) 0 > ‘ —W> ; vd i
Encoder R S S [ O S
| e layer 6 I S
! : syninject: 1. addition, 3. fusion — S _—
[y layer 5 | | seminject: 1. addition, 2. memory, 3. fusion » ) - ) '
Language T [ A — :
) (o T | e
‘\ L layer O ]  Combination: : i 3. fusion ‘ot o o T 5 Key
______ A / : 1. addition Q + memory KV : s
f_\ T 2. addition QKV : : :
s Pam 3. fusion Q + memory KV W, W, W, W, 1 :
Oy, -y e ATUSONQY L B e

[1] Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, AmirAli Bagher Zadeh, and Louis-Philippe Morency. 2018. Efficient lowrank multimodal fusion with modality-specific factors. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 2247-2256, Melbourne, Australia. Association for Computational Linguistics.



Language modelling task:

1. injecting only syntax in Q can
improve LM performances on

explanatory sentences. (05 vs
12,14,16,18).

2. injecting semantic and syntax
spaces into different attention
components can additionally
improve model performance.
(lines 9-11 vs 12, 14, 16, 18)

3. addition injection with Bert -
TransCONV (line 17) can achieve
the best overall results.

Empirical analysis

Corpus Mathematical expression Explanatory sentences
Metrics EVAL VAR-SWAP EASY EQ-CONV LEN BLEU BLEURT Cosine Loss| PPL|
sentence VAE baselines
01. AAE(768) 0.10 0.75 0.00 0.25 0.02 0.53 0.00 0.54 0.00 0.51 0.35 -0.95 0.80 3.35 28.50
02. LAAE(768) 0.00 0.43 0.00 0.25 0.00 0.27 0.00 0.29 0.00 0.44 0.26 -1.07 0.78 3.71 40.85
03. DAAE(768) 0.00 0.24 0.00 0.21 0.00 0.21 0.00 0.22 0.00 0.42 0.22 -1.26 0.76 4.00 54.59
04. B-VAE(768) 0.00 0.14 0.00 0.15 0.00 0.13 0.00 0.14 0.00 0.35 0.06 -1.14 0.77 3.69 40.04
05. Optimus(768)  0.99 0.99 0.00 0.38 0.81 0.93 0.00 0.81 0.14 0.76 0.35 -0.59 0.83 098 2.66
different encoding setups with memory injection
06. LSTM 1.00 1.00 0.00 0.35 0.73 094 0.00 0.77 0.06 0.74 0.41 -0.41 0.85 1.04 2.82
07. VGAE 0.98 0.99 0.00 0.34 0.72 093 0.00 0.74 0.04 0.71 0.26 -0.91 0.78 1.14 2.55
08. Siam 1.00 1.00 0.00 0.30 0.22 0.80 0.00 0.78 0.03 0.75 0.49 -0.15 0.88 094 255
GraphEncoder
09. + GCN 0.00 0.40 0.00 0.22 0.00 0.27 0.00 0.37 0.00 0.43 0.15 -1.19 0.75 124 345
10. + GraphSAGE 0.88 0.96 0.00 0.28 0.06 0.46 0.00 0.69 0.00 0.60 0.45 -0.28 0.87 1.00 2.71
11. + TransCONV 0.89 095 0.00 0.28 0.14 0.53 0.00 0.67 0.00 0.61 0.17 -1.16 075 121 335
Graph-language encoders: injecting syntax into Q, semantic into KV

Bert-GraphSAGE
12. + addition Q 0.99 0.99 0.00 0.27 0.23 0.63 0.00 0.71 0.02 0.66 0.60 0.22 092 074 2.09
13. + addition QKV 1.00 1.00 0.00 0.35 0.65 0.90 0.00 0.80 0.06 0.75 0.63 0.31 093 065 191
14. + fusion Q 0.94 0.97 0.00 0.29 0.08 0.63 0.00 0.71 0.00 0.62 0.55 0.03 091 090 245
15. + fusion QKV  1.00 1.00 0.00 0.38 0.37 0.84 0.00 0.80 0.02 0.73 0.46 -0.23 0.88 1.10 3.00
Bert-TransCONV
16. + addition Q 0.98 0.99 0.00 0.26 0.31 0.69 0.00 0.67 0.01 0.63 0.59 0.18 092 076 2.13
17. + addition QKV 1.00 1.00 0.00 0.38 0.90 0.98 0.00 0.82 0.10 0.78 0.65 0.35 094 0.62 1.85
18. + fusion Q 0.96 098 0.00 0.29 0.18 0.60 0.00 0.74 0.00 0.64 0.53 -0.02 090 098 2.66
19. + fusion QKV  0.99 0.99 0.00 0.35 0.45 0.82 0.00 0.80 0.01 0.74 0.46 -0.16 0.88 1.13 3.09




kind

of

living

thing

<EOS>

Attention(Q, K, V') = softmax(———=—)[z; V]

Empirical analysis

Question: Why graph-language encoders can improve language modelling performance?

Layer 12: Averaging Head Attention

kind

of

living

thing

<EOS>

z <BOS> a bee is a kind  of living thing<EOS>

Qlz; K"
Vvd

softmax (

Layer 12: Averaging Head Attention

z <BOS> a bee is a kind  of living thing<EOS>

(Q ® Zsyn)[zsem; K]T
Vd

|

Nzsem; V]

Gold explanations

BERT-GPT2

Bert/TransCONV-GPT2

lenses are a kind of object

the chemical symbol for helium is he
a rose is a kind of plant

a body of water contains water
growing is a kind of process

air is a kind of gas

action means activity

soda water is a kind of carbonated bev-
erage

plasma is a kind of state of matter
earth is a kind of celestial object
a bee is a kind of living thing
green is a kind of color

a wooded area is a kind of forest

frog is a kind of object

a substance has a physical shape

a window pane is a kind of surface

a flood has a large amount of rainfall
population is a kind of process
farming is a kind of human

feed means use

condensing is a kind of change in tem-
perature

black probability is a kind of event

sun is a kind of light

a frog is a kind of amphibian
deforestation is a kind of process

a coal mine is a kind of natural resource

lenses are a kind of object

the chemical symbol for helium is He
arose is a kind of flower

a body of water contains water
growing is a kind of process

air is a kind of gas

activity means action

soda water is a kind of carbonated bev-
erage

plasma is a kind of state of matter
earth is a kind of celestial object
abee is a kind of living thing
green is a kind of color

a wooded area is a kind of forest

Observation: Comparing vanilla Optimus with Bert-TransCONV(addition Q), the latent space can better encode

lexical information.

Hypotheses: language encoder induce information bottleneck (i.e., trade-off between semantics and syntax),
dual encoders can alleviate such bottleneck (see our paper for proof).



Empirical analysis

Latent traversal: Semantic Space Traversal

Input: a sea is a source of sea water

: a desert is a land found in desert environments

: a forest is a large structure that contains lots of trees
: ariver is a nonliving thing

: a canyon is a very deep valley

: a mountain is a large land mass

Given an input, performing random
walk (e.g., Ornstein- Uhlenbeck)

AW -O

: a sea is a source of water for humans

: a sea is a source of freshwater

: ariver is a source of water

: an ocean is a source of water for residents

Observation:

W o

Graph-language encoders setup

leads to better generation control. Table 9: Qualitative evaluation of traversed examples of Optimus (top) and Bert-TransCONV (addition QKV)
(bottom).

Traversing syntax lead to both

. Syntax Space Traversal
syntax and semantics changed. .

Input: a sea is a source of sea water

0: a river is synonymous with a coastline
1: a hurricane is composed of water vapor and dust
2: a hurricane is the source of most of water vapor in the atmosphere
3: hurricane is mainly made of water vapor

4: a hurricane is measuring the amount of water in an area

Table 10: Qualitative evaluation of traversed examples of Bert-TransCONYV (addition QKV).
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Language VAE: literature review

Prior Latent Space

Gaussian sentence

Fixed

semantic-syntax

vMF sentence

Model Name

Encoder-Decoder

DG-VAE [10] LSTM

AdaVAE [9] GPT2-GPT2
Optimus [5] Bert-GPT2
LLaMaVAE [4] sentencel5-LlaMA

(Bowman et al., 2015) [16]
DELLA[1]

(Zhang et al., 2024) [3]

LSTM

GPT2-GPT2 or Transformer

Bert-TransCONV-GPT2

(Bao et al., 2019) [2] LSTM
(Chenetal., 2019) [8] LSTM
SIVAE [11] LSTM

(Xu and Durrett, 2018) [15] LSTM




Language VAE: literature review

Prior Latent Space Model Name Encoder-Decoder
hierarchical sequence HRQ-VAE [12] Transformer
sequence T5VQVAE [13] 15
single sentence FlowPrior [14] LSTM
single sentence DPrior [7] Bert-GPT2
Trainable hyperbolic APo-VAE [6] LSTM
label-content VAE-DPrior [17] Bert-GPT2
CVAE: Gaussian (Fang et al., 2021)[18] Transfomer
CVAE: Gaussian PPVAE [19] LSTM

CVAE: Gaussian T-CVAE [20] Transformer



Language VAE: literature review

[1] Jinyi Hu, Xiaoyuan Yi, Wenhao Li, Maosong Sun, and Xing Xie. 2022. Fuse It More Deeply! A Variational Transformer with Layer-Wise Latent Variable Inference for Text Generation. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 697-716, Seattle, United States. Association for Computational Linguistics.

[2] Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou, Olga Vechtomova, Xin-yu Dai, and Jiajun Chen. 2019. Generating Sentences from Disentangled Syntactic and Semantic Spaces. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 6008-6019, Florence, Italy. Association for Computational Linguistics.

[38] Zhang, Y., Valentino, M., Carvalho, D. S., Pratt-Hartmann, |., & Freitas, A. (2023). Graph-Induced Syntactic-Semantic Spaces in Transformer-Based Variational AutoEncoders. arXiv preprint arXiv:2311.08579.

[4] Zhang, Y., Carvalho, D. S., Pratt-Hartmann, |., & Freitas, A. (2023). LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent Sentence Spaces. arXiv preprint arXiv:2312.13208.

[5] Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. 2020. Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 4678-4699, Online. Association for Computational Linguistics.

[6] Shuyang Dai, Zhe Gan, Yu Cheng, Chenyang Tao, Lawrence Carin, and Jingjing Liu. 2021. APo-VAE: Text Generation in Hyperbolic Space. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 416—431, Online. Association for Computational Linguistics.

[7] Xianghong Fang, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Dit-Yan Yeung. 2022. Controlled Text Generation Using Dictionary Prior in Variational Autoencoders. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 97—-111, Dublin, Ireland. Association for Computational Linguistics.

[8] Mingda Chen, Qingming Tang, Sam Wiseman, and Kevin Gimpel. 2019. A Multi-Task Approach for Disentangling Syntax and Semantics in Sentence Representations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2453-2464, Minneapolis, Minnesota. Association for
Computational Linguistics.

[9]1Tu, H., Yang, Z., Yang, J., & Huang, Y. (2022). Adavae: Exploring adaptive gpt-2s in variational auto-encoders for language modeling. arXiv preprint arXiv:2205.05862.

[10] Zhang, J., Bai, J., Lin, C., Wang, Y., & Rong, W. (2022). Improving variational autoencoders with density gap-based regularization. Advances in Neural Information Processing Systems, 35, 19470-19483.

[11] Xinyuan Zhang, Yi Yang, Siyang Yuan, Dinghan Shen, and Lawrence Carin. 2019. Syntax-Infused Variational Autoencoder for Text Generation. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2069-2078, Florence, Italy. Association for Computational Linguistics.

[12] Tom Hosking, Hao Tang, and Mirella Lapata. 2022. Hierarchical Sketch Induction for Paraphrase Generation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 2489-2501, Dublin, Ireland. Association for Computational Linguistics.

[13] Yingji Zhang, Danilo Carvalho, Marco Valentino, lan Pratt-Hartmann, and Andre Freitas. 2024. Improving Semantic Control in Discrete Latent Spaces with Transformer Quantized Variational Autoencoders. In
Findings of the Association for Computational Linguistics: EACL 2024, pages 1434-1450, St. Julian’s, Malta. Association for Computational Linguistics.

[14] Xiaoan Ding and Kevin Gimpel. 2021. FlowPrior: Learning Expressive Priors for Latent Variable Sentence Models. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 3242-3258, Online. Association for Computational Linguistics.

[15] Xu, J., & Durrett, G. (2018). Spherical latent spaces for stable variational autoencoders. arXiv preprint arXiv:1808.10805.

[16] Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., & Bengio, S. (2015). Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.

[17] Zhuang Li, Lizhen Qu, Qiongkai Xu, Tongtong Wu, Tianyang Zhan, and Gholamreza Haffari. 2022. Variational Autoencoder with Disentanglement Priors for Low-Resource Task-Specific Natural Language
Generation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10335-10356, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

[18] Fang, L., Zeng, T., Liu, C., Bo, L., Dong, W., & Chen, C. (2021). Transformer-based conditional variational autoencoder for controllable story generation. arXiv preprint arXiv:2101.00828.

[19] Duan, Y., Xu, C., Pei, J., Han, J., & Li, C. (2019). Pre-train and plug-in: Flexible conditional text generation with variational auto-encoders. arXiv preprint arXiv:1911.03882.

[20] Wang, T., & Wan, X. (2019, August). T-CVAE: Transformer-based conditioned variational autoencoder for story completion. In [JCAI (pp. 5233-5239).


https://aclanthology.org/2022.naacl-main.51
https://aclanthology.org/P19-1602
https://aclanthology.org/2020.emnlp-main.378
https://aclanthology.org/2021.naacl-main.36
https://aclanthology.org/2022.findings-acl.10
https://aclanthology.org/N19-1254
https://aclanthology.org/P19-1199
https://aclanthology.org/2022.acl-long.178
https://aclanthology.org/2024.findings-eacl.97
https://aclanthology.org/2021.naacl-main.259
https://aclanthology.org/2022.emnlp-main.706
https://aclanthology.org/2022.emnlp-main.706

i
] "

% ¥

Hl
wm» nll

' \ I nmn

%
‘ |

‘ ‘ H ] ;
\ ‘ N »1 1! N
I R e {1 (I | ' | .w'
:” | '“":I“:m“%‘l!fiM'i“ "li:";,iﬂw':tl E: it ]m u; A "“ml h[l' it m| Il m n l f.![ llﬂ"
AR e A e
| |
1

uaum 4 s::" l\ WMU“

\ |

Il A

(iiAAe il Hlllt

| IHIH ‘|  mm}’l' ‘H\|, *l

[T

I | it H“'!

i H.a ;,m |

I !
T 1
’!:'.'J: .

| , “m i
o I Wu i uﬂu, |

imh ‘I“nw | ,l! i .,311 i

HIHI ” “

hl‘ |

| m I nm i N" * lw l!‘“ it

1,
“' ' i s, ‘:':];n;g
’yﬂl}"" P i £y ll R S

"I‘ :]II IHI| “tj | i A 'W‘:l “'"“!I' | walll m|i'”” ‘“ ” | ’f
"%” i )II il ' l "'4417:"' '*"“jw M ' W™ H""H '”m]ﬂ ”' o 4 ,.

M

"
|

| f"‘
' |

|

‘ ;' | il | ' |t ‘ l
\ “ E.H'. | B O e | “lm ““"““““p l“'““““““n l““m '” |
" \ ..,A”!H’|’f1 il ;,,_‘ (e A i i L il tl” Ihmﬂ“
il I ARt TR el |j.;|w OISO ‘ 1| i | |
it ’j I | d]!ﬁ“ i | At ‘nn e L T .
I e fl | it |
LTIy “’\( ...... |I"
..’M ..\,:}u 1 \\ | // I HHH
M — e ||n ‘l



Closer integration with transformer interpretability

Mechanistic interpretability, disentanglement and transformer theory.

Large Language Models Are Latent Variable Models:
Explaining and Finding Good Demonstrations for
In-Context Learning

Xinyi Wang', Wanrong Zhu', Michael Saxon', Mark Steyvers?, William Yang Wang!
! Department of Computer Science, University of California, Santa Barbara
2Departynent of Cognitive Sciences, University of California, Irvine

Published as a conference paper at ICLR 2022

AN EXPLANATION OF IN-CONTEXT LEARNING AS
IMPLICIT BAYESIAN INFERENCE

Sang Michael Xie, Aditi Raghunathan, Percy Liang, Tengyu Ma
Stanford University
{xie,aditir,pliang, tengyuma}@cs.stanford.edu

On the Origins of Linear Representations
in Large Language Models

Yibo Jiang*!, Goutham Rajendran*2,
Pradeep Ravikumar?, Bryon Aragam?, and Victor Veitch* 5

I Department of Computer Science, University of Chicago
2Machine Learning Department, Carnegie Mellon University
3Booth School of Business, University of Chicago
4Department of Statistics, University of Chicago
5Data Science Institute, University of Chicago



Multi-step semantic control as a dynamical systems model

Composable Text Controls in Latent Space with ODEs

Guangyi Liu'37, Zeyu Feng?, Yuan Gao?, Zichao Yang®, Xiaodan Liang®°,

Junwei Bao®, Xiaodong He®, Shuguang Cui', Zhen Li!, Zhiting Hu?
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‘Carnegie Mellon University, °DarkMatter Al Research, ®JD AI Research
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Latent Space Editing in Transformer-Based Flow Matching

Vincent Tao Hu'?, David W Zhang!, Pascal Mettes', Meng Tang’, Deli Zhao*, Cees G.M. Snoek!
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continuous normalizing flow:

https://veryunknown.com/post/continuous-normalizing-flows/

https://jmtomczak.github.io/blog/18/18 fm.html
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Conclusions

Today we focused at the interface between formal semantic models
and neural models.

Emphasizing two dimensions: interpretability and control.

We focused on mechanisms that allows for close semantic
Integration, with an emphasis on VAEs as an architecture.

This allows for a complementary perspective to the current empirical
norm: less task-oriented and more representation centered
(fundamental linguistic and inference properties).



Appendix



Discretisation: 3. Gumbel Softmax trick

Recap: In VAE, stochastic sampling from a distribution will stop the deterministic backward propagation.

Therefore, we use reparameterization trick (i.e., sampling a noise following a standard Gaussian distribution).

Gumbel softmax trick: Now, we want to sample from a categorical distribution. We can also sample a

noise from Gumbel distribution.

\ 4
&

Encoder g4(2|x) decoder py(z|z)

€~ Gumbel(p=0,8=1)
reparameterization trick

€ J U
RS




The output of the encoder is [z, . .

Discretisation: 3. Gumbel Softmax trick

Proof: why adding a Gumbel noise is the same as sampling from
a categorical distribution?

., Tk, - - . , &N | where each element represents a category and has its corresponding prob-
..,pn]|. Gumbel softmax trick adds a noise Gy, to the output to get a new output [z1, . .
where z; = zx + G, and Gy, ~ Gumbel(n = 0, 8 = 1) and choose the category with the biggest z;. Therefore, we only
need to prove: p(zx > z;) = px, where i # k.
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